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Thermal diffusion of supersonic solitons in an anharmonic chain of atoms
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We study the nonequilibrium diffusion dynamics of supersonic lattice solitons in a classical chain of atoms
with nearest-neighbor interactions coupled to a heat bath. As a specific example we choose an interaction with
cubic anharmonicity. The coupling between the system and a thermal bath with a given temperature is made by
adding noise,d correlated in time and space, and damping to the set of discrete equations of motion. Working
in the continuum limit and changing to the sound velocity frame we derive a Korteweg-de Vries equation with
noise and damping. We apply a collective coordinate approach which yields two stochastic ODEs which are
solved approximately by a perturbation analysis. This finally yields analytical expressions for the variances of
the soliton position and velocity. We perform Langevin dynamics simulations for the original discrete system
which confirm the predictions of our analytical calculations, namely, noise-induced superdiffusive behavior
which scales with the temperature and depends strongly on the initial soliton velocity. A normal diffusion
behavior is observed for solitons with very low energy, where the noise-induced phonons also make a signifi-
cant contribution to the soliton diffusion.

DOI: 10.1103/PhysRevE.67.016610 PACS number~s!: 05.45.Yv, 05.40.2a, 63.10.1a
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I. INTRODUCTION

Nonlinear one-dimensional lattice dynamics, name
propagation of coherent excitations in monatomic cha
modeling discrete microscopic structures, is associated
several important problems in physics. Among these exc
tions are solitary waves, which for simplicity are called he
solitons. These solitons can be supported by chains with
alistic interaction potentials between the particles@1,2#. They
are supersonic nontopological collective excitations. In sp
of their relative simplicity, the solitons clarify many feature
of molecular chains@3–7#. For example, due to their robus
character, lattice solitons have been used to model the en
transport in polypeptide chains in muscle proteins@8–10# or
the energy transport in DNA@12#. Numerical simulations a
realistic temperatures for transport in proteins have sho
that lattice solitons can propagate over long distances
chain with the Lennard-Jones potential@9#. Moreover, the
lattice solitons are more stable than Davydov solitons if c
lisions between the two types of solitons are considered@10#.
There is no clear evidence that lattice solitons such as a T
type, which are nontopological, can exist in thermal equil
rium. This holds both for static properties, like the spec
heat, and for dynamics quantities, like the dynamic fo
factor ~Fourier transform of the displacement autocorre
tion! @11#. On the other hand, there exists evidence from r
experiments that strain solitons can be generated and
served in nonlinear elastic rods@13#. These solitons in some
cases can be described by Korteweg-de Vries~KdV! type
solitons, which are nontopological.

To our knowledge there are no previous analytical stud
supported by Langevin simulations about nontopologi
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lattice soliton diffusion in anharmonic monatomic chains
particles with nearest-neighbor interactions. There are m
studies on stochastic partial differential equations, in parti
lar stochastic KdV-type equations have been extensiv
studied numerically and analytically@14–19# due to the in-
tegrability of the KdV equation. In fact, the KdV equation
a good approximation to describe analytically the dynam
of lattice solitons on a monatomic chain with neare
neighbor interaction and cubic anharmonicity if the solit
velocity is very close to the sound velocity~very-low-energy
solitons! @4,20#. Notice that for a polynomial potential
namely, harmonic term plus cubic or/and quartic anharm
nicity, the one-soliton solution of the KdV equation is know
analytically, while for more realistic interaction potentia
like Lennard-Jones or Morse there are no exact soliton s
tions. In the more general context of lattice systems, there
a few analytical studies about diffusion of coherent latt
excitations, viz., stochastic vortex dynamics in tw
dimensional easy-plane ferromagnets@21# or soliton diffu-
sion on the classical, isotropic Heisenberg chain@22,23#.

The aim of this work is to provide an approximate an
lytical description of the soliton diffusion dynamics in
monatomic chain with a cubic anharmonicity under therm
fluctuations. For this purpose we generate a single sol
which has an energy much greater thankBT, wherekB is the
Boltzmann constant, andT is the temperature of a therma
bath. This soliton propagating on a chain in contact with
thermal bath shows a diffusive behavior. We consider t
soliton diffusion dynamics during the thermalization proce
of the system up to times when the system energy has
laxed nearly to its stationary value. This means that we st
the nonequilibrium diffusion dynamics of lattice solitons o
©2003 The American Physical Society10-1
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anharmonic chains subject to thermal fluctuations.
In order to perform the coupling between the system a

a thermal bath with a given temperature an additive no
term, providing energy input, is added to the discrete eq
tions of motion. This term has to be balanced by a damp
term providing energy dissipation. Here, we suggest a
damping term the so-called hydrodynamical damping@24#
which is extensively used in, e.g., elasticity theory. Not
that this type of damping is due to irreversible proces
taking place within the system. The corresponding no
term, which fulfills the fluctuation-dissipation theorem, tak
the form of a discrete gradient of Gaussian white noised
correlated in space and time. A similar Langevin-type eq
tions has previously been considered in the context of me
scopic Langevin dynamics@25#.

We notice that our system in the continuum limit can
approximated by a noisy KdV-Burgers-type equati
@26,27#. So in this case we can use the one-soliton solution
the KdV equation not only as initial condition of our discre
system but also in our analytical approach in the continu
limit. Notice that the shape of broad KdV solitons tends to
identical to the shape of broad supersonic lattice solitons@4#.
In this work we apply a generalized traveling wave ans
combined with a collective coordinate formalism in th
framework of the KdV equation as an analytical approach
study the diffusion of lattice solitons.

In the following section we present the equations of m
tion of our discrete system. From this we formulate a se
stochastic equations of motion by adding noise and damp
Next, we apply the continuum limit and derive a form
noisy KdV-Burgers equation. In Sec. III we apply a colle
tive coordinate approach that yields analytical expressi
for the thermal averages and variances of the soliton pos
and velocity. In Sec. IV, we compare our analytical pred
tions with the results from Langevin dynamics simulatio
for the original discrete system. Our conclusions are sum
rized in the last section.

II. THE CONTINUUM LIMIT

We consider an anharmonic chain of particles with m
M and nearest-neighbor interactions. The particles inte
via an anharmonic potential with a cubic anharmonicity. T
Hamiltonian of this system reads

H5(
n

H Pn
2

2M
1GS 1

2
~Yn112Yn!21

A

3
~Yn112Yn!3D J ,

~1!

whereYn denotes the longitudinal displacement of thenth
particle from its equilibrium position, and

Pn5M
dYn

dt
~2!

is the momentum. HereG andA are the potential paramete
whose values depend on the lattice. The associated first o
equations of motion read
01661
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dYn

dt
5

1

M
Pn , ~3!

dPn

dt
52

]H

]Yn
1Fn

Noise1Fn
Damping, ~4!

where

]H

]Yn
52G~Yn1122Yn1Yn21!

2GA@~Yn112Yn!22~Yn2Yn21!2#. ~5!

In Eq. ~4! we have already added both a stochastic fo
Fn

Noise and a damping forceFn
Damping. Both forces couple

the discrete system with a thermal bath. Here, we use
inner or hydrodynamical damping, which reads@24,28#

Fn
Damping5MnS dYn11

dt
22

dYn

dt
1

dYn21

dt D . ~6!

This means that the energy dissipation is provided by
irreversible processes arising from the finite velocity of t
internal motions of the system, namely, time derivative of
relative displacements between particles in the chain. Eq
tion ~6! is the discrete version of the damping used in el
ticity theory @24#. To fulfill the fluctuation-dissipation theo
rem the noise must have the form~see Appendix A!

Fn
Noise5AD @jn11~ t !2jn~ t !#, ~7!

where

D52MnkBT ~8!

is the diffusion constant andn is the damping constant.jn(t)
is d-correlated white noise,

^jn~ t !jm~ t8!&5dnmd~ t2t8!, ~9!

^jn~ t !&50. ~10!

Since our interest is the study of the lattice soliton diffusi
close to the sound velocityc we can use the continuum limi
approach, whereYn(t)→y(x,t) and jn(t)→j(x,t) with x
5na anda the equilibrium atomic spacing. In this limit@4#,
Eq. ~3! reduces to a form of noisy and damped KdV equat
~see Appendix B for details!

]t u16u]su1]s
3u5n1]ssu2AD1]sj̄~s,t!, ~11!

where

s5a~x2ct!, t5bt, u5g]sy. ~12!

The constantsa, b, andg are defined in Eq.~B9!, andn1
andD1 are given by Eqs.~B13!. Note that

^j̄~s,t!j̄~s8,t8!&5d~s2s8!d~t2t8!. ~13!

Here and in the following the line overj̄ is omitted.
0-2
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The caseD150 reduces Eq.~11! to the KdV-Burgers
equation. The associated KdV equation is

]t u16u]su1]s
3u50 ~14!

whose one-soliton solution reads

u0~s,t!52h0
2 sech2@h0~s24h0

2t2s0!#. ~15!

Here

h05
1

p
A3c~v2c! ~16!

is the inverse soliton width ands0 is the initial soliton posi-
tion. The sound velocityc and the constantp are defined in
Eq. ~B5!.

III. COLLECTIVE COORDINATE APPROACH

To analyze our problem we assume that the soliton pro
u0(s,t) is not disturbed by the noise and damping terms a
that only the width and amplitude are modified. This assum
tion is well satisfied for low-energy solitons, whose veloc
is close to the sound velocity, because tails induced by
perturbations are small in this velocity regime@29,28#. So we
introduce a generalized traveling wave ansatz of the form

u~s,t!5u0@s2S~t!,h~t!#

52h2~t! sech2$h~t!@s2S~t!#%, ~17!

where the collective variablesS(t) andh(t) are the soliton
position and the inverse soliton width, respectively. Here a
in the following the index of the one-soliton solutionu0 is
omitted.

To obtain the equations for our collective coordinates
follow @30,31#. First, by substituting Eq.~17! into Eq. ~11!
we get

f1Ṡ~t!1f2ḣ~t!5n1]ssu2AD1]sj~s,t!, ~18!

where

f1~s,t!5
]u

]S
~19!

and

f2~s,t!5
]u

]h
. ~20!

Notice that the functions$f i% i 51,2 coincide with the adia-
batic approximation~omitting secular terms in time! of the
discrete solutions of the linearized KdV equation around
one-soliton solution~15! @32#. We remark here that our col
lective coordinate theory does not take into account the c
tribution of the phonon modes~continuous basis function
solution of the linearized KdV!. We discuss the effect o
noise-induced phonons in Sec. IV B. The functions$f i% i 51,2
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are also orthogonal, so the inner product*dsf i(s,t)h(s,t)
projects a functionh onto the functions$f i% i 51,2. Then, by
projecting Eq.~18! we get

AiṠ~t!1Bi ḣ~t!5 f i1 f i
damping1 f i

Noise, i 51,2 ,
~21!

where

Ai5E ds
]u

]S
f i , ~22!

Bi5E ds
]u

]h
f i , ~23!

f i5E ds~6u]su1]s
3u!f i , ~24!

f i
damping5n1E ds]ssuf i , ~25!

f i
Noise52AD1E ds]sj~s,t!f i . ~26!

After some calculations Eq.~21! takes the form

dS~t!

dt
54h2~t!1

15AD1

64h5~t!
E ds~]sf1!j~s,t!, ~27!

dh~t!

dt
52

30n1

301p2
h3~t!

1
45AD1

16~301p2!h~t!
E ds~]sf2!j~s,t!. ~28!

To achieve the calculations we have assumed that the so
profile remains mostly unaffected and only its width and a
plitude change due to the stochastic perturbations. Then
least for small noise, we can perform the calculations
taking the soliton field out of the averages. Moreover,
have interpreted Eqs.~27! and~28! in the Stratonovich sense
because it assumesj(s,t) is a real noise with finite correla
tion time, which is then allowed to become infinitesimal
small after calculating measurable quantities@33#. Notice
that white noise means taking the limit of zero correlati
time.

Equations~27! and ~28! can take the form

dY~t!

dt
5AStr@Y~t!#1E dsB̂Str@s,Y~t!#j~s,t!, ~29!

where the elements of the noise vectorj satisfy Eq.~13!.
$Y1 ,Y2%5$S,h% are the elements of the vectorY, the ele-
ments$A1

Str,A2
Str% of the drift vectorAStr are the drift terms

in Eqs.~27! and~28!, respectively. The diffusion matrixB̂Str

is diagonal, whereB11
Str andB22

Str are the coefficients in fron
of the noise in Eqs.~27! and ~28!, respectively. In order to
facilitate the calculations we write Eq.~29! in the Ito form,
0-3
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dY~t!5AIto@Y~t!#dt1E dsB̂Ito@s,Y~t!#dW~s,t!,

~30!

where thedW(s,t)5j(s,t)dt is a Wiener process. Via a
Fokker-Planck equation, one can show that the element
the drift vectorAIto read@33#

Ai
Ito@Y~t!#5Ai

Str@Y~t!#

1
1

2 (
j k m

E dsBk m
Str@s,Y~t!#]Yk

Bi j
Str@s,Y~t!#,

i , j ,k51,2 , ~31!

while

B̂Ito@s,Y~t!#5B̂Str@s,Y~t!#. ~32!

Notice thatAIto and B̂Ito are nonanticipating functions. So
from Eq. ~30! it is easy to show the following averages:

^S~t!&5K E
0

t

dt84h2~t8!L ,

^h~t!&52K E
0

t

dt8
30n1

301p2
h3~t8!L

1E
0

t

dt8
225~23118p2!D1

112~301p2!2
,

var@S~t!#5K E
0

t

dt8
75D1

112h3~t8!
L ,

var@h~t!#5K E
0

t

dt8
225~211p2! D1h~t8!

28~301p2!2 L ,

Corr@S~t!h~t!#50. ~33!

Here ^•••& means average over an ensemble of realizati

Corr~PQ!5^PQ&2^P&^Q& and var~P!5Corr~PP!.

~34!

Now we define a new set of Langevin equations

dYi~t!5aidt1(
j

bi j dWj~t!

with i , j 51,2 and $Y1 ,Y2%5$S,h%, ~35!

which we have interpreted in the Ito sense.dWj (t)
5j j (t)dt are Wiener processes where we have let the no
to be uncorrelated, namely,

^j j~t!j j 8~t8!&5d~t2t8!d j j 8 . ~36!
01661
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In order to determine the values ofai and bi j we have de-
manded that Eqs.~35! satisfy the relations~33!. It is straight-
forward to see that Eqs.~35! take the form

dS~t!54h2~t!dt1
5A3

4A7
A D1

h3~t!
dW1~t!, ~37!

dh~t!5S 2
30n1

301p2
h3~t!1

225~23118p2!D1

112~301p2!2 D dt

1
15A211p2

2A7~301p2!
AD1h~t!dW2~t!. ~38!

Equations~37! and ~38! are statistically equivalent to Eqs
~27! and ~28! because they share the same Fokker-Pla
equation. Since the derivation of Eqs.~37! and~38! involved
approximations, we have not solved them exactly. Instead
that, we have used perturbation analysis@34#, which is de-
veloped in detail in Appendix C. In order to do so, we ha
considered the thermal terms as perturbations, so Eqs.~37!
and ~38! take the form

dS~t!54h2~t!dt1e
5A3

4A7
A D1

h3~t!
dW1~t!, ~39!

dh~t!52
30n1

301p2
h3~t!dt1eS 225~23118p2!D1

112~301p2!2
dt

1
15A211p2

2A7~301p2!
AD1h~t!dW2~t!D . ~40!

Now, we seek an asymptotic solution in the form of a sma
noise expansion

S~t!5s0~t!1es1~t!1•••,

h~t!5h0~t!1eh1~t!1•••. ~41!

Here,e is a factor introduced for convenience in the analy
cal calculations. Notice that the casee50 reduces Eqs.~39!
and ~40! to the deterministic case. In order to interpret o
perturbation theory we must sete51 and assume that th
terms on the right-hand side of Eqs.~39! and ~40! are suffi-
ciently small. So we must restrict ourselves to a regime
low temperatures of the thermal bath (D1 small!. From the
perturbation analysis we obtain that
0-4
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^S~t!&5^s0~t!&1^s1~t!&

54
h0

2~0!

l
ln~11lt!1

15D1~23118p2! h0~0! ~2~11lt!5/225lt22!

7~301p2!2l2~11lt!
,

^4h2~t!&5^4h0
2~t!18h0~t!h1~t!&

5
4h0

2~0!

11lt
1

45D1~23118p2!h0~0!~~11lt!5/221!

7~301p2!2l~11lt!2
,

~42!

var„S~t!…5D1S 215

56h0
3~0!l

2
480~211p2!h0

3~0!@817lt~5lt14!#

49~301p2!2l3~11lt!2

1
15~11tl!3/2

392~301p2!2h0
3~0!l3

@2048~211p2!h0
6~0!17~301p2!2l2~11lt!# D ,

var„4h2~t!…5
7200D1~211p2!h0

3~0!

49l~301p2!2 S 1

A11lt
2

1

~11lt!4D .
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The expressions forD1 andl are given by Eqs.~B13! and
~C10!, respectively.

IV. SIMULATIONS

Substituting Eqs.~6! and ~7! into Eq. ~3! we get the full
set of discrete equations of motion written in absolute d
placements. However, for our simulations relative displa
ments are more convenient, because the lattice soliton
this representation are pulse solitons whose amplitude
ishes at infinity. This characteristic allows us to use perio
boundary conditions which are necessary for long simula
times, because we want to avoid reflections at the bou
aries. So the discrete equations of motion in relative d
placements read

M
d2Vn

dt2
5G~Vn1122Vn1Vn21!

1GA~Vn11
2 22Vn

21Vn21
2 !

1MnS dVn11

dt
22

dVn

dt
1

dVn21

dt D
1AD@jn11~ t !22jn~ t !1jn21~ t !#, ~43!

whereVn(t)5Yn11(t)2Yn(t) and D52MnkBT. The peri-
odic boundary conditions read

dlV0

dtl
5

dlVN21

dtl
,

dlVN

dtl
5

dlV1

dtl
, l 50,1 ,

j0~ t !5jN21~ t !, jN~ t !5j1~ t !, ~44!

whereN is the number of particles of our chain andN21 is
the number of bonds.
01661
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A suitable method to detect the position of a pulse latt
solitonVn(t) is to search for its maximum@28#. However, in
the presence of stochastic perturbations this method is
useful since the pulse shape is strongly masked by the no
an example of this situation is shown in Appendix E. S
from the data of our simulations we have taken snapshot
the system at different times, and from them we have ge
ated the kink-shapeYn(t) of the lattice soliton by using the
algorithm

Yn~ t !5Y1~ t !1 (
i 51

n21

Vi~ t !, n52,3, . . . ,N. ~45!

The kink shape is less distorted by the noise than the p
shapeVi(t). In Eq. ~45! Y1(t) is a boundary condition tha
we have demanded to be

Y1~ t !52
1

2 (
i 51

N21

Vi~ t !, ~46!

so at t50 the amplitude of the center of the kink shape
zero, as it should be from the theory@4#. Notice that

YN~ t !2Y1~ t !5 (
i 51

N21

Vi~ t ! ~47!

is a conserved quantity in our system, i.e.,

ẎN~ t !2Ẏ1~ t !5 (
i 51

N21

V̇i~ t !50. ~48!

We have checked Eq.~48! with a precision higher than 10214

over the whole time range of our Langevin dynamics sim
lations.
0-5
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In order to determine every time the parameters of
soliton, namely, soliton velocityv and positionx, we have
proceeded as follows. We have searched for the values o
parametersx andv where the relation

(
n5n02n1

n01n1

@Yn2y0~n a2x,v !#50 ~49!

is fulfilled. Here

y0~na2x,v !5
6A2hc~v2c!

p
tanhS na2x

L~v ! D ~50!

with

L~v !5@ah~ t !#2152A h

2c~v2c!
. ~51!

Here the functionh is defined in Eq.~16! and the constants
h, p, c, anda are defined in Eqs.~B5! and~B9!. the function
~50! is the absolute displacement representation of the o
soliton solution~15! in a frame moving with the soliton ve
locity. In Eq. ~49!

n05 int~x! and n15 intS 3

2
L@v~0!# D , ~52!

where int(•) denotes the integer part of a number andv(0)
is the initial soliton velocity. The value ofn1 has been cho-
sen to take into account only the core of the lattice k
shape and it is constant during our simulations. In orde
determine bothx andv we consider different values ofv in
Eq. ~49! within a range of velocities around the initial solito
velocity, namely, v2cP$0.1@v(0)2c#,2@v(0)2c#%. For
every value ofv we search the valuex that fulfills Eq. ~49!,
so we get a set of pairs of valuesx andv. Finally, from this
set of pairs of values we search, by using linear interpolat
the values ofx andv which fulfill the relation

(
n5n02n1

n01n1

Yny0~na2x,v !

(
n5n02n1

n01n1

@y0~na2x,v !#2

51. ~53!

Notice that in Eqs.~49! and ~53! we have assumed that th
lattice kink-shapeYn is closely related with the functiony0,
however, as was mentioned in Ref.@28#, a pulse lattice soli-
ton in the presence of damping develops a tail. The am
tude of this trailing tail depends on both soliton the veloc
and the damping, so it is bigger when the damping and/or
soliton velocity is higher. Thus, we restrict ourselves to v
locities very close to the sound velocity where the effect
this trailing tail is negligible.

Up to now we have determined the parametersx and v,
which fit the functiony0 to the lattice kink-shapeYn , so we
have not measured directly eitherx or v. Since the function
y0 is closely related to the lattice kink-shapeYn , one could
assume bothx and v as an estimate of the soliton positio
01661
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and velocity, respectively. However, we have taken only
parameterv as an estimate of the soliton velocity and wi
this value we have used a different method to determine
soliton position. In fact, in order to be in agreement with o
collective coordinate approach, where we have projected
equations of motion onto the Goldstone modef1 @Eq. ~19!#,
we have projected the noisy kink-shapeYn(t) onto the pulse
solution u0 defined in Eq.~15!. Notice that in the absolute
displacement representation the functionu0 is the Goldstone
mode. So this projection reads

P~x!5 (
i 5n2n2

n1n2

Yi~ t !u0~ i a2x,v !, ~54!

where

u0~ i a2x,v !5
6c~v2c!

p
sech2S i a2x

L~v ! D ~55!

andx5na. The value ofn2 in Eq. ~54! is much larger than
the soliton width, so the boundary effects are negligible. T
function u0( i a2x,v) is the one-soliton solution~15! in a
frame moving with the soliton velocity. Afterwards we hav
searched, by linear interpolation, the valuex, where P(x)
vanishes and we have defined it as the position of the sol
center of mass. At this point we remark that the values ox
following from this latter method are not significantly diffe
ent from the values ofx following from the former method
@Eqs.~49! and~53!#. However, we consider the latter metho
to be more appropriate than the former one in the sense
we proceed in our code in a similar way as in our analyti
calculations.

Our Langevin dynamics simulations were performed fo
chain with 1500 lattice points. The time integration was c
ried out by using the Heun method@34,35#, which has been
successfully used in the numerical solution of partial diffe
ential equations and difference-differential equatio
coupled to either an additive or a multiplicative noise te
@21–23,36#. Here, we have used the conserved quantity~47!
to check the accuracy of our code@28#. For the longest simu-
lation time the variation of this conserved quantity has be
lower than 1029%. In order to start the simulations att50
we have used the one-soliton solution~15! of the KdV equa-
tion in the laboratory frame. The average values have b
calculated over 200 realizations up to a final time 5000.
values of the constants of the Eq.~43! are set at unity excep
the damping constant which is set atn50.003. Notice that
for lower values of damping the relaxation of the syste
energy would take more time in our simulations to reach
regime close to its stationary value. On the other ha
higher values of damping can strongly distort the solit
shape, namely, the tail induced by the damping cannot
neglected when the value of the damping is high. In App
dix D we show the thermalization process in our system.
our simulations the values of temperatureT and initial soli-
ton velocityv(0) are parameters~see figure captions!.
0-6
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FIG. 1. Averaged soliton posi-
tion ~a! and velocity~b! vs time in
the sound velocity framez5x2t
(c51), with n50.003 andT55
31025. Dotted lines, simulation,
solid lines, theory@Eqs. ~42!#. A,
B, C, D, and E correspond to dif
ferent initial velocities, namely,
v(0)51.001, 1.003, 1.005, and
1.007, respectively.
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A. Soliton propagation

In Figs. 1~a! and 1~b! we show several examples of bo
the averaged soliton position^x(t)& and the averaged solito
velocity ^v(t)& as functions of time from both the simulatio
and the theory@see Eqs.~42!#. Notice that

^x~ t !&5
1

a
^S~bt !&1ct ~56!

and

^v~ t !2c&5S p2

12cD ^4h2~bt !&. ~57!

For all cases the soliton position from the simulation agr
well with the position given by the analytical theory. In th
case of the soliton velocity, the agreement is better for ini
velocities close to the sound velocity than for higher velo
ties. In fact, the time evolution of the velocity given by th
simulation is always higher than the theoretical predicti
This systematic difference may be due to the small tail tha
generated by the lattice soliton since it is a nontopolog
soliton @28#. So it may affect our numerical method for d
termining the soliton position. We point out that the amp
tude of this tail depends on both the soliton velocity and
damping constant, and can be neglected only for veloci
close to the sound velocity and small values of the damp
constant@28#. This is the most important reason for restric
ing our study to low-energy solitons whose velocities a
close to the sound velocity. Since this difference is syste
atic it does not play any role in the numerical calculation
the variances which is our more important goal in this artic

B. Soliton diffusion

In Figs. 2 and 3 we show the variances of the solit
position and velocity vs time for different initial velocities
The temperature of the thermal bath in Fig. 3 is 10 tim
higher than that in Fig. 2. The results scale very well by
factor of 10; i.e., the variances are proportional to the te
perature, as expected from Eq.~42!.

Notice that our theory~solid lines! has no adjustable
parameters. Taking into account that the theory consist
several steps~discrete system→ Bq equation→ KdV equa-
tion → collective coordinate theory→ perturbation analysis!
it is already a significant success to obtain the observed
sults, as seen in Figs. 2 and 3.
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We observe that the behavior of the variances depe
strongly on the initial soliton velocity. For low-energy sol
tons, whose velocities are close to the sound velocity@Figs. 2
and 3, cases~a! and ~b!#, the soliton diffusion tends to be
nearly normal, i.e., linear in time. In fact, our theory predic
a normal diffusion for times

t!t* 5S 301p2

495 D S c

n~v~0!2c! D . ~58!

This estimate was obtained by comparing the first with s
ond terms of the Taylor expansion in powers oft of the
variance of the velocity@see Eq.~C16!#. For low-energy soli-
tons @v(0)*c# t* is much larger than our simulation tim
@Figs. 2~a! and 3~a!#. This means that the superdiffusivity i
not very dominant. However, for higher-energy solitons t
anomalous behavior turns out to be important after so
time. In those casest* is comparable with our simulation
time @Figs. 2~e! and 3~e!#.

In the case of solitons with very low energy the varian
of the position@Figs. 2~a! and 3~a!# does not agree well with
the theoretical prediction. In fact, we observe a transient
havior for times t&3/n51000, where the system energ
shows a fast relaxation process~see Appendix D!. Those
discrepancies between theory and simulations may be du
the combination of two effects. First, the profile of low
energy solitons is strongly masked by the noise, so the
merical detection of the position can be distorted. Seco
not only the noise but also the noise-induced phonons
make a significant contribution to the variance of the po
tion, since the reduced temperatureT̄5kBT/H(0) @tempera-
ture in units of the initial soliton energyH(0)], of the ther-
mal bath is higher here than in the other cases~see captions
Figs. 2 and 3!. In this respect we estimate the phonon effe
on the diffusion of low-energy solitons in the following se
tion ~see also Fig. 4!.

Notice that the variance of the soliton position is larg
for low-energy solitons@Figs. 2~a! and 3~a!# than for higher-
energy solitons@for instance Figs. 2~e! and 3~e!#. This is due
to the fact that the higher-energy solitons are more rob
against thermal fluctuations than the lower-energy ones.
equivalently, the reduced temperatureT̄ of the thermal bath
is higher for slow solitons than for the fast ones~see captions
of Figs. 2 and 3!.

On the other hand, the superdiffusive behavior is m
pronounced for higher-energy solitons. This is because
soliton velocity turns out to be more sensitive to the therm
0-7
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ARÉVALO et al. PHYSICAL REVIEW E 67, 016610 ~2003!
FIG. 2. Variances of the soli-
ton position @panels~a!, ~c!, and
~e!# and velocity@panels~b!, ~d!,
and ~f!# of the soliton vs time,
with n50.003 andT5531026.
Dotted lines, simulation; solid
lines, theory@Eqs.~42!#. The pan-
els correspond to different initia
velocities, namely, v(0)51.003
@~a! and ~b!#, 1.005 @~c! and ~d!#
and 1.007@~e! and ~f!#. The re-

duced temperatures are T̄
50.006 141 9, 0.002 833 24, an
0.001 697 65, respectively.
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fluctuations in this case than in the case of broader solito
Notice that the soliton velocity and soliton width are relate
Also, since the higher-energy solitons encompass few lat
sites, the soliton-width perturbations are larger with resp
to the averaged soliton width in this case than in the cas
broader solitons~low-energy solitons!. In fact, the variance
of the soliton velocity shows this effect, namely, that f
broader solitons@Figs. 2~b! and 3~b!# this variance is smalle
than for narrower solitons@for instance Figs. 2~f! and 3~f!#.
The discrepancy between our theory and the numerical si
lations for higher-energy solitons@Figs. 2–3, cases~c!–~f!# is
mainly due to the fact that our theory is valid only for solito
velocities close to the sound velocity.

With respect to the variance of the soliton velocity@Figs.
2 and 3, panels~b!, ~d!, and~e!# we observe that it is mostly
anomalous and its behavior is nearly quantitatively predic
by our theory for 0<t&2000 in all the cases. For large
times, 2000<t,5000, there is a discrepancy that becom
larger with increasing initial velocities.

We remark that the numerical results shown in Figs. 2 a
3 do not change for systems with the double number of si
namely, 3000.

We comment that there was a previous attempt by S
erandiet al. @19# to calculate theoretically the mean squa
displacement of a KdV soliton subject to stochastic fluct
tions. They considered the case of small Stokes damping
a simple white noised correlated in time and space. Thoug
their theoretical result shows the appearance of a no
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induced superdiffusive behavior, it does not have the sa
dependence with respect to the soliton width as our res
~42!, which agree well with our simulations.

C. Estimate of the phonon contribution

In order to estimate this contribution we have perform
the following numerical test. We have simulated the prop
gation of low-energy solitons under thermal fluctuations
to a time~e.g., 2500! when the system energy is close to
stationary value~see Appendix D!. Notice that the diffusion
of low-energy solitons is mostly normal@see Figs. 2~a! and
3~a!#. Afterwards, we have isolated the system from the th
mal bath by switching off noise and damping, so that solito
propagate only in the noise-induced phonon bath. The di
sion is mostly normal before and after the system is isola
i.e., the variance of the position is linear in time. We ha
compared the slope of the variance of the isolated sys
(t.2500) with the slope of the variance in the case when
system is in contact with the thermal bath the whole time.
example of this test is shown in Fig. 4. We observe that b
slopes, after switching off noise and damping, are differe
In a normal diffusion process the slope of the variance of
soliton position is the diffusion constant. We call thisDtotal
when the system is in contact with the thermal bath sin
there is a contribution of both the thermal fluctuations a
the phonons. The diffusion constant due to the noise-indu
phonon bath~isolated system! is termedDph . On the other
0-8
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FIG. 3. Variances of the soli-
ton position @panels~a!, ~c!, and
~e!# and velocity@panels~b!, ~d!,
and ~f!# of the soliton vs time,
with n50.003 andT5531025.
Dotted lines, simulation; solid
lines, theory@Eqs.~42!#. The pan-
els correspond to different initia
velocities, namely, v(0)51.003
@~a! and ~b!#, 1.005 @~c! and ~d!#
and 1.007@~e! and ~f!#. The re-

duced temperatures are T̄
50.061 419, 0.028 332 4, an
0.016 976 5, respectively.
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hand, our theoretical diffusion constantDth is defined as the
linear coefficient of the Taylor expansion ofvar„x(t)… @see
Eqs. ~C13! and ~C14!#. Since our theory does not take in
account the contribution of phonon modes, we expect
the valueDnoise5Dtotal2Dph may be of the same order o
magnitude ofDth . We observe in Fig. 5 that the relativ
deviation ofDth from Dnoise, @(Dnoise2Dth)/Dnoise#, has
the same order of magnitude ofDth which is not surprising
since the soliton shape is strongly masked and distorted
the noise~see Appendix E!. In this respect we remark tha
from our results in Figs. 2 and 3 we observe that

Avar„x~ t !…,L„v~ t !…, ~59!

where the soliton widthL„v(t)… is defined in Eq.~51!. The
relation~59! means that the stochastic deviations of the s
ton center from its mean value are relatively small compa
with the soliton width. So the diffusive dynamics of the so
ton position evolves inside the soliton core. Thus, this
namics is very sensitive to the fluctuations of the solit
shape. Notice that our method of determining the soli
position depends implicitly on the soliton shape. So in
case of low-energy solitons, where the shape is stron
masked by the noise, the uncertainties of the method of s
ton detection are relatively large compared with the diffus
01661
at

by

i-
d

-

n
e
ly
li-
e

dynamics of the soliton position. This is because the dif
sive dynamics is relatively small with respect to the solit
width. In this respect we note that higher-energy solito
present a well defined shape, i.e., the thermal fluctuations

FIG. 4. An example of a test to determine the phonon contri
tion to the diffusion constant. Comparison of the behavior of varx)
from simulations~dotted lines! when the system is in contact~A!
and isolated~B, noise and damping are switched off fort.2500)
from the thermal bath. The slope of the straight lines~solid lines!
fitted to the simulation data~dotted! in both cases give the observ
able values of the diffusion constant, namely,Dtotal ~A! and Dph

(B). The difference can be compared with the slopeDth of the
dashed line@linear part of the theory, Eq.~C13!#. v(0)51.003, T

5531026, T̄50.006 141 9.
0-9
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ARÉVALO et al. PHYSICAL REVIEW E 67, 016610 ~2003!
small respect to the soliton amplitude, so the variance of
soliton position, given by our detection method, inde
agrees better with our theory.@see 2~c! and 3~c!#. Finally, we
stress that in our tests the phonon contribution to the sol
diffusion could be clearly observed only for very low-ener
solitons@Figs. 2 and 3, cases~c! and ~e!#, for higher-energy
solitons the effect is negligible, namely,Dph.0.

D. Estimate of the bath temperature in real physical systems

To clarify the physical meaning of the obtained results
have estimated the soliton energy and characteristic temp
ture of the thermal bath for two systems where solitons
believed to play an essential role:a-helical proteins@9# and
crystal inertial gases@37#. In both cases the Lennard-Jon
~LJ! interaction potential

fLJ54E0F S a

r D 12

2S a

r D 6G ~60!

is used. One can estimate the potential parametersG andA of
the Hamiltonian~1! by using Taylor expansion of Eq.~60!
around the minimumr 5(1221/6)a. So, taking into accoun
only the coefficients of the harmonic and cubic terms of t
expansion, one can determine the potential parame
namely,

A52
21

27/6a
and G5

3622/3E0

a2
. ~61!

By using the one-soliton solution of the Bq Eq.~B1! @4# and
performing an integration instead of a summation in Eq.~1!,
the initial soliton energyH(0) reads

H~0!5
16A3

245
~~v/c!221!3/2~119~v/c!2!E0 . ~62!

Here v and c are the soliton and sound velocities, respe
tively. E050.22eV for a-helix @9# or E051.031022 eV for

FIG. 5. Relative deviation„(Dnoise2Dth)/Dnoise… of the diffu-

sion coefficient vskBT/H(0)5T̄ with v(0)51.003.
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argon @38#. So, for example, in the cases ofv/c51.003 or
1.03 we get

a-helix argon
v/c H(0)/kB @K# H(0)/kB @K#

1.003 1.4 0.06
1.03 45.7 2.15

Here kB is the Boltzmann constant. Then, the value of t
temperature of the thermal bath can be obtained by multip
ing the values ofH(0)/kB by the reduced temperature. Fo
instance, in thea-helix case the reduced temperatureT̄
50.061 419~see caption Fig. 3! corresponds to 0.1 K of the
thermal bath ifv(0)51.003 or 3.8 K ifv(0)51.03.

V. SUMMARY AND CONCLUSIONS

We have studied the nonequilibrium diffusion dynami
of lattice solitons on a classical chain of atoms under ther
fluctuations, namely, soliton dynamics when the system
ergy is close to its stationary value. The interaction poten
between the atoms is harmonic plus a cubic anharmonic
The chain is coupled to a thermal bath at a given tempe
ture. For that reason we have included dissipation and n
in the discrete equations of motion of the chain. Here, it
assumed that the energy dissipation is provided by the i
versible processes arising from the finite velocity of the re
tive displacements between particles in the chain. Thus
dissipative term takes the form of a hydrodynamical dam
ing which is extensively used in elasticity theory. The no
term which fulfills the fluctuation-dissipation theorem the
becomes a discrete gradient of white noised correlated in
space and time. In the continuum approach our original d
crete set of equations leads to a form of noisy KdV-Burg
equation. At this point we have used a collective coordin
approach to study the diffusion dynamics of both positi
and velocity of the soliton. The soliton position and the i
verse soliton width have been found to be good collect
coordinates to describe the soliton diffusion. We have
rived two stochastic ordinary differential equations with mu
tiplicative noise which have been solved analytically usi
stochastic perturbation analysis.

For low-energy solitons, whose velocities are close to
sound velocity, our molecular dynamics simulation has c
firmed our analytical predictions. Namely, normal diffusio
of lattice solitons governs short times, while superdiffusi
behavior is present for long times. The time range of
normal diffusion depends on the initial velocity of the so
ton: it is large for velocities close to the sound velocity a
short for high velocities. The collective coordinate approa
does not take into account the noise-induced phonon b
however, we have shown that this does not play an impor
role except when the reduced temperature@temperature in
units of the initial soliton energyH(0)] of the thermal bath
is high. In that regime the soliton diffusion is normal. In th
case, for a given temperature, we have estimated in our s
lations the value of the diffusion constant due to the noi
0-10
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THERMAL DIFFUSION OF SUPERSONIC SOLITONS IN . . . PHYSICAL REVIEW E67, 016610 ~2003!
induced phonon bath when the system energy is close t
stationary value. We have subtracted this value from the
value of the diffusion constant, which is not only due to t
induced phonons but also due to the noise. The orde
magnitude of the resultant value of this subtraction is p
dicted by the collective coordinate approach.

Since we do not observe in our numerical results a
dependence on the size of the system, we may expect sim
results for very large systems, i.e., forN@1500.

We provided an example by using an approximation
the Lennard-Jones potential to determine the temperatur
the thermal bath in the cases ofa-helical proteins and crysta
inertial gases.

Finally, our results above point out the robustness of
tice solitons. In fact, they can exist even for higher values
temperature and damping constant than those explicitly c
sidered in the present article. On the other hand, for lo
values of the temperature the variances of the soliton p
tion and velocity turn out to be very small because they sc
with the temperature. So it is very difficult to observe the
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APPENDIX A: DERIVATION OF THE NOISE TERM

The goal of this appendix is to find the form of the noi
force that would satisfy the fluctuation-dissipation theore
The associated set of Langevin equations of the class
chain of atoms under thermal fluctuations are

dPn

dt
5Tn1Fn

Noise1Fn
Damping, ~A1!

dYn

dt
5

Pn

M
, ~A2!

where

Tn52
]H

]Yn
52

]U

]Yn
,

Fn
Damping5MnS dYn11

dt
22

dYn

dt
1

dYn21

dt D ~A3!

and FNoise(t), which satisfies the fluctuation-dissipatio
theorem, is to be determined.Pn is the momentum,Yn de-
notes longitudinal displacement from its equilibrium po
tion, of nth particle with massM and velocitydYn /dt. H is
the Hamiltonian

H5K1U, ~A4!

where
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K5(
n

Pn
2

2M
, U5(

n
V@Yn112Yn# ~A5!

andV is an arbitrary potential which depends on the relat
displacementsYn112Yn . The discrete Fourier transform o
Eqs.~A1! and ~A2! read

dP̃k

dt
5T̃k2ng̃kP̃k1F̃k

Noise~ t !,

dỸk

dt
5

P̃k

M
, ~A6!

where

g̃k52@12cos~k!#. ~A7!

We define

F̃k
Noise~ t !5AD~k!j̃k~ t !, ~A8!

wherej̃k(t) is d correlated white noise,

^j̃k~ t !j̃k8~ t8!&5D~k!d~ t2t8!dk,2k8 , ~A9!

andD(k) is unknown.
The associated Fokker-Planck equation of Eqs.~A6! in

the Stratonovich sense takes the form

] tr5(
k

F2] P̃k
~Tkrk!2

P̃2k

M
] Ỹ2k

rk

1ng̃k] P̃kS P̃krk1
D~k!

2ng̃k

] P̃2k
rkD G , ~A10!

where

r5K)
k

d @ P̃k2 P̃k~ t !#d @Ỹk2Ỹk~ t !#L . ~A11!

In order to determineD(k) we have demanded the stationa
solution of Eq. ~A10! to be the Boltzmann distribution
namely,

r5N expS 2
H

kBTD , ~A12!

whereH is defined in Eq.~A4! andN is the normalization
constant. Substituting Eq.~A12! into Eq.~A10!, it is straight-
forward to see that

D~k!52ng̃kMkBT. ~A13!

Therefore, from Eq.~A8! together with~A13!, it is easy to
show that in position space
0-11
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^Fn
Noise~ t !Fn8

Noise
~ t8!&

522nMkBTd~ t2t8!~dn11,n822dn,n81dn21,n8!.

~A14!

Finally, the relation~A14! can be satisfied by the definition

Fn
Noise~ t !5A2nMkBT @jn11~ t !2jn~ t !#, ~A15!

where

^jn~ t !jn8~ t8!&5d~ t2t8!dn,n8 . ~A16!

APPENDIX B: CONTINUUM LIMIT

In order to reduce Eq.~3! to a form of noisy and dampe
KdV equation we have performed two steps. First, we h
employed the continuum approach@4,20# in order to obtain a
form of noisy and damped Bq equation, and then we h
used the reductive perturbation technique@20,39# in order to
obtain the noisy and damped KdV equation.

1. Noisy and damped Bq equation

Here we have used the procedure of Pnevmatikos@4#,
who expandedYn61(t) and Yn62(t) in a Taylor series
aroundy(x,t), with x5na, where the equilibrium atomic
spacinga is regarded as an expansion parameter. Then,
lecting powers ofa, Eq. ~3! together with Eqs.~6! and~7! at
O(a4) takes the form

] t
2y5c2]x

2y1p]xy]x
2y1h]x

4y1na2]x
2] ty1aAD]xj~x,t !,

~B1!

where

jn11~ t !2jn~ t !

a3/2
→]xj~x,t !, ~B2!

with properties

^]xj~x,t !&50,

^]xj~x,t !]x8j~x8,t8!&5]x8]xd~x2x8!d~ t2t8!.
~B3!

The diffusion constant takes the form

D5
2nkBT

r
. ~B4!

Other constants are

c25
Ga

r
, p5

2a2AG

r
,

h5
a3G

12r
, r5M /a. ~B5!
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2. Noisy and damped KdV equation

We write Eq.~B1! in the sound velocity frame and mak
a further approximation concerning variations in time. In th
case we may use the reductive perturbation technique@39#.
Therefore, we rewrite Eq.~B1! in the perturbation form

] t
2y2c2]x

2y2p]xy]x
2y2h]x

4y

5k@na2]x
2] ty1aAD]xj~x,t !#, ~B6!

where we have introduced a small parameterk for conve-
nience. Afterwards, we perform the following change of va
ables

s5ka~x2ct!, t5k3bt, u5g]sy, ~B7!

so that

]x5ka]s and ] t5k3b]t2kac]s , ~B8!

where

a5
p

A6h
, b5

p3

12cA6h
, g5

1

A6h
. ~B9!

We have also expressedu andj in a perturbation series

u5ku11k2u21•••, ~B10!

j5kj11k2j21•••. ~B11!

Here the parameterk indicates the magnitude of the rate
change, the coefficientsk andk3 in Eq. ~B7! are chosen in
order to balance the nonlinear term, and the dispersive t
and the time derivative are of the same order ink. The small
noise expansion~B11! is defined such that the lowest ord
terms of noise and damping are of the same order. Subst
ing Eqs.~B8!, ~B10!, and ~B11! into ~B6!, and keeping the
lowest order terms, namelyO(k5), we find that

]t u16u]su1]s
3u5n1]ssu2AD1]sj~s,t!, ~B12!

where we have setu5u1 andj5j1.

n15
A6na2c

Ahp
, D15Da bS 6a

p3 D 2

. ~B13!

APPENDIX C: PERTURBATION ANALYSIS

In this appendix we develop a perturbation approach
the equations@see Eqs.~39! and ~40!#

dS~t!54h2~t!dt1e
5A3

4A7
A D1

h3~t!
dW1~t!, ~C1!
0-12
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dh~t!52
30n1

301p2
h3~t!dt1eS 225~23118p2!D1

112~301p2!2
dt

1
15A211p2

2A7~301p2!
AD1h~t!dW2~t!D . ~C2!

We interpret Eqs.~C1! and ~C2! in the Ito sense where th
Wiener process dWi(t)5j i(t)dt with ^j i(t)j j (t8)&
5d i j d(t2t8). We seek an asymptotic solution of the form

S~t!5s0~t!1es1~t!1•••,

h~t!5h0~t!1eh1~t!1•••. ~C3!

Inserting Eqs.~C3! into Eqs.~C1! and ~C2! and collecting
powers ofe we gete0,

ds0~t!54h0
2~t!dt, ~C4!

dh0~t!52
30n1

301p2
h0

3dt, ~C5!

e1,

ds1~t!58h0~t!h1~t!dt1
5A3

4A7
A D1

h0
3~t!

dW1~t!,

~C6!

dh1~t!52
90n1

301p2
h0

2~t!h1~t!dt

1
15A211p2

2A7~301p2!
AD1h0~t!dW2~t!. ~C7!

Solving Eqs.~C4! and ~C5! we obtain

s0~t!54
h0

2~0!

l
ln~11lt!, ~C8!

h0~t!5
h0~0!

A11lt
, ~C9!

with

l5
60n1h0

2~0!

301p2
. ~C10!

Inserting Eq.~C9! in ~C7! and solving, with the initial con-
dition h1(0)50, we find
01661
h1~t!5
45D1~23118p2!~~11lt!5/221!

56~301p2!2l~11lt!3/2

1
15A211p2

2A7~301p2!
AD1h0~0!E

0

t

~11lt8!5/4dW2~t8!.

~C11!

Then inserting Eqs.~C11! and~C9! in Eq. ~C6! and integrat-
ing once we get

s1~t!5
15D1~23118p2!h0~0!

7~301p2!2l2~11lt!
@2~11lt!5/225lt22#

1
5A3AD1

4A7h0
3/2~0!

E
0

t

~11lt8!3/4dW1~t8!

1
60A211p2

A7~301p2!
AD1h0

3/2~0!

3E
0

t

dt8
1

A11lt8
E

0

t8
~11lt9!5/4dW2~t9!.

~C12!

To this order we have var„S(t)…5e2var„s1(t)… and thus we
finally obtain

var„S~t!…5e2S 75D1

112h0
3~0!

t1
225D1l

448h0
3~0!

t21O~t3!D .

~C13!

The full expressions of var(S) to this order of perturbation is
given by Eqs.~42!. Notice that the variance in the rest fram
reads

var„x~ t !…5
1

a2
var„S~bt !…. ~C14!

Concerning soliton velocity, up to first order perturbation
reads

4h2~t!54h0
2~t!18eh0~t!h1~t!. ~C15!

Then, by substituting Eqs.~C9! and~C11! in Eq. ~C15!, it is
straightforward to see that

var„4h2~t!…564e2^h0~t!&2var„h1
2~t!…

5e2S 3600~211p2!D1

7~301p2!2
h0

3~0!t

2
9900~211p2!D1l

7~301p2!2
h0

3~0!t21O~t3!D .

~C16!
0-13
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FIG. 6. var(x) @Eq. ~C14!# and
var(v) @Eq. ~C17!# vs time com-
pared with results from a numeri
cal solution of Eqs.~37! and~38!.
In panels ~a! and ~b! T55
31026, and in panels~c! and ~d!
T5531025. A and B in all
cases correspond tov(0)51.005
and v(0)51.001, respectively.
n50.003. Solid line, analytical
prediction; dashed line, numerica
solution.
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The full expressions of var(4h2) to this order of perturbation
is given by Eqs.~42!. In the rest frame this variance reads

var„v~ t !…5S p2

12cD 2

var„4h2~bt !…. ~C17!

In Fig. 6 we show some examples of var(x) and var(v)
compared with results from a numerical solution of Eqs.~37!
and~38! for which we have used the Heun method@35#. The
variances have been obtained by averaging over 1000
izations.

APPENDIX D: THERMALIZATION PROCESS

From the generalized equipartition theorem@40# we have
that

K (
n51

N

Yn~ t !
]H~ t !

]Yn~ t !L 5NkBT, ~D1!

when the system is in thermal equilibrium with an extern
bath at temperatureT. The relation~D1! is strictly satisfied in
the harmonic limit of the Hamiltonian~1!, namely,A50.
For finite values ofA the relation~D1! is a rather good ap
proximation to evaluate the temperature of our system w
the relative displacements are sufficiently small, namely,

Yn11~ t !2Yn~ t !!
3

2A
. ~D2!

Notice thatA51 in our simulations. The condition~D2! can
be obtained by comparing the harmonic term with the cu
anharmonicity in Eq.~1! and it is always satisfied in th
present work.

So, in order to examine the thermalization process,
can define the ensemble average
01661
al-

l

n

c

e

^Heqp~ t !&5K (
n51

N

Yn~ t !
]H~ t !

]Yn~ t !L . ~D3!

For finite times^Heqp(t)& possesses two contributions, on
due to the coupling to the thermal bath,^Heqp

th (t)&, and the
other one due to the soliton,^Heqp

sol (t)&. So

^Heqp~ t !&5^Heqp
th ~ t !&1^Heqp

sol ~ t !&, ~D4!

Notice that for a very large system (N@1500) the contribu-
tion of the soliton energy,̂Heqp

sol (t)&, can be neglected. How
ever, in our system of 1500 sites this contribution is app
ciable. In fact, the time evolution of̂Heqp(t)& for different
initial soliton energies presents different values due to
soliton contribution. Here, we remark that in thermal eq
librium, i.e., t→`, these differences vanish. In Eq.~D4!
^Heqp

th (t)& gives us information about the time evolution
the temperature of the system in terms of the temperatur
the thermal bath. The soliton contribution^Heqp

sol (t)& can be
evaluated numerically using Eq.~D3! when the soliton
propagates in the presence of the damping but without no
Then one can perform the numerical subtraction^Heqp(t)&
2^Heqp

sol (t)& to obtain^Heqp
th (t)&, which is shown in a nor-

malized form in Fig. 7. We remark that we observe the sa

FIG. 7. ^Hepq
th &/NkBT vs t. n50.003.
0-14
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FIG. 8. Lattice soliton profiles,
pulse shape~a!, kink shape~b!.
Solid line, noisy shape, Dashe
line, shape in the presence o
damping only.T5531025, v(0)
51.003,n50.003, andt55000.
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d
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result here in systems with the double number of sit
namely 3000. The normalized thermalization process
pends only on the damping constant which has the s
valuen50.003 in all our simulations. Notice that for time
t&3/n51000 there is a fast relaxation process, but for lar
times,t*3/n, the energy system approaches very slowly
stationary value. The thermal equilibrium of the system w
the external bath corresponds to the case^Heqp

th (t)&/kBT
51.
nd

,

-
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APPENDIX E: PROFILES

In Fig. 8 we compare snapshots of the system at
5 5000 with and without noise and in the presen
of damping. Figures 8~a! and 8~b! correspond to both the
kink shape~absolute displacements! and the pulse shap
~relative displacements!, respectively. Both shapes, with an
without noise, in Fig. 8~b! were reconstructed from th
shapes in Fig. 8~a!, respectively, by using the algorithm~45!.
.R.
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