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Thermal diffusion of supersonic solitons in an anharmonic chain of atoms
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We study the nonequilibrium diffusion dynamics of supersonic lattice solitons in a classical chain of atoms
with nearest-neighbor interactions coupled to a heat bath. As a specific example we choose an interaction with
cubic anharmonicity. The coupling between the system and a thermal bath with a given temperature is made by
adding noiseg correlated in time and space, and damping to the set of discrete equations of motion. Working
in the continuum limit and changing to the sound velocity frame we derive a Korteweg-de Vries equation with
noise and damping. We apply a collective coordinate approach which yields two stochastic ODEs which are
solved approximately by a perturbation analysis. This finally yields analytical expressions for the variances of
the soliton position and velocity. We perform Langevin dynamics simulations for the original discrete system
which confirm the predictions of our analytical calculations, namely, noise-induced superdiffusive behavior
which scales with the temperature and depends strongly on the initial soliton velocity. A normal diffusion
behavior is observed for solitons with very low energy, where the noise-induced phonons also make a signifi-
cant contribution to the soliton diffusion.
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[. INTRODUCTION lattice soliton diffusion in anharmonic monatomic chains of
particles with nearest-neighbor interactions. There are many
Nonlinear one-dimensional lattice dynamics, namely,studies on stochastic partial differential equations, in particu-
propagation of coherent excitations in monatomic chaindar stochastic KdV-type equations have been extensively
modeling discrete microscopic structures, is associated witktudied numerically and analyticall[fl4—19 due to the in-
several important problems in physics. Among these excitategrability of the KdV equation. In fact, the KdV equation is
tions are solitary waves, which for simplicity are called herea good approximation to describe analytically the dynamics
solitons. These solitons can be supported by chains with resf lattice solitons on a monatomic chain with nearest-
alistic interaction potentials between the parti¢le®]. They  neighbor interaction and cubic anharmonicity if the soliton
are supersonic nontopological collective excitations. In spitevelocity is very close to the sound velocityery-low-energy
of their relative simplicity, the solitons clarify many features solitons [4,20]. Notice that for a polynomial potential,
of molecular chain$3—7|. For example, due to their robust namely, harmonic term plus cubic or/and quartic anharmo-
character, lattice solitons have been used to model the energycity, the one-soliton solution of the KdV equation is known
transport in polypeptide chains in muscle protdi®s 10 or  analytically, while for more realistic interaction potentials
the energy transport in DNAL2]. Numerical simulations at like Lennard-Jones or Morse there are no exact soliton solu-
realistic temperatures for transport in proteins have showtions. In the more general context of lattice systems, there are
that lattice solitons can propagate over long distances in a few analytical studies about diffusion of coherent lattice
chain with the Lennard-Jones potentf&l]. Moreover, the excitations, viz., stochastic vortex dynamics in two-
lattice solitons are more stable than Davydov solitons if col-dimensional easy-plane ferromagné2d] or soliton diffu-
lisions between the two types of solitons are considgt®li  sion on the classical, isotropic Heisenberg cHain,23.
There is no clear evidence that lattice solitons such as a Toda The aim of this work is to provide an approximate ana-
type, which are nontopological, can exist in thermal equilib-lytical description of the soliton diffusion dynamics in a
rium. This holds both for static properties, like the specificmonatomic chain with a cubic anharmonicity under thermal
heat, and for dynamics quantities, like the dynamic formfluctuations. For this purpose we generate a single soliton
factor (Fourier transform of the displacement autocorrela-which has an energy much greater thafi, wherekg is the
tion) [11]. On the other hand, there exists evidence from reaBoltzmann constant, and is the temperature of a thermal
experiments that strain solitons can be generated and olvath. This soliton propagating on a chain in contact with the
served in nonlinear elastic rofi$3]. These solitons in some thermal bath shows a diffusive behavior. We consider this
cases can be described by Korteweg-de V(i€dV) type  soliton diffusion dynamics during the thermalization process
solitons, which are nontopological. of the system up to times when the system energy has re-
To our knowledge there are no previous analytical studiesaxed nearly to its stationary value. This means that we study
supported by Langevin simulations about nontopologicathe nonequilibrium diffusion dynamics of lattice solitons on
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anharmonic chains subject to thermal fluctuations. dy, 1
In order to perform the coupling between the system and at - Mpna 3)
a thermal bath with a given temperature an additive noise
term, providing energy input, is added to the discrete equa- dP, 9H _ _
tions of motion. This term has to be balanced by a damping — = + FNoisey phamping 4
term providing energy dissipation. Here, we suggest as a dt INn
damping term the so-called hydrodynamical dampiad] ere
which is extensively used in, e.g., elasticity theory. Notice
that this type of damping is due to irreversible processes OH
taking place within the system. The corresponding noise .~ " 6(Yni1=2Yn+Yny)
term, which fulfills the fluctuation-dissipation theorem, takes "
the form of a discrete gradient of Gaussian white naise —GA (Yni1—Yn)2=(Yn—Yn 1?2 (5

correlated in space and time. A similar Langevin-type equa-

tions has previously been considered in the context of mesdn Ed. (4) we have already added both a stochastic force

scopic Langevin dynamid®5]. FN°'s® and a damping forc&P2™P"9. Both forces couple
We notice that our system in the continuum limit can bethe discrete system with a thermal bath. Here, we use the

approximated by a noisy KdV-Burgers-type equationinner or hydrodynamical damping, which regd@s,2§

[26,27]. So in this case we can use the one-soliton solution of

the KdV equation not only as initial condition of our discrete EDamping_ \1 d¥n:a _ dY, d¥Yna 6)

system but also in our analytical approach in the continuum n dt dt dt

limit. Notice that the shape of broad KdV solitons tends to be

identical to the shape of broad supersonic lattice solifghs ~This means that the energy dissipation is provided by the

In this work we app|y a genera”zed trave"ng wave ansatjrreversible processes arising from the finite velocity of the

combined with a collective coordinate formalism in the internal motions of the system, namely, time derivative of the

framework of the KdV equation as an ana|ytica| approach td’elative displacements between particles in the chain. Equa—

study the diffusion of lattice solitons. tion (6) is the discrete version of the damping used in elas-
In the following section we present the equations of mo-ticity theory [24]. To fulfill the fluctuation-dissipation theo-

tion of our discrete system. From this we formulate a set ofém the noise must have the forisee Appendix A

stochastic equations of motion by adding noise and damping. Noise

Next, we apply the continuum limit and derive a form of FN= VD[ &0 1(t) = &n(D)], (7)

noisy KdV-Burgers equation. In Sec. Ill we apply a collec-

tive coordinate approach that yields analytical expression

for the thermal averages and variances of the soliton position D=2M vkgT @)

and velocity. In Sec. IV, we compare our analytical predic-

tions with the results from Langevin dynamics simulationsis the diffusion constant andis the damping constang,(t)

for the original discrete system. Our conclusions are sUmmgs s-correlated white noise,

rized in the last section.

gvhere

(€n(Dém(t"))= Snmo(t—t"), 9

(&n(1))=0. (10)
We consider an anharmonic chain of particles with mass ) ) . . o
M and nearest-neighbor interactions. The particles interacgiNce our interest is the study of the lattice soliton diffusion
via an anharmonic potential with a cubic anharmonicity. Theclose to the sound velocitywe can use the continuum limit

Hamiltonian of this system reads approach, where/,(t)—y(x,t) and &,(t)—&(x,t) with x
=na anda the equilibrium atomic spacing. In this linfi],

II. THE CONTINUUM LIMIT

p2 1 A Eqg. (3) reduces to a form of noisy and damped KdV equation
H=>, ﬁ +G E(YnJrl_Yn)z’l' §(Yn+1—Yn)3) ] , (see Appendix B for details
n
oy 9, U+6UdU+ U= v1ds— VD 1dsé(s,7),  (11)

whereY,, denotes the longitudinal displacement of thié&  where
particle from its equilibrium position, and

s=a(x—ct), 7=8t, u=rydyy. (12
P,=M % 2) The constantsy, 8, and y are defined in Eq(B9), and v,
dt andD, are given by Eqs(B13). Note that
is the momentum. Her& andA are the potential parameters (z(s, T)E(S, , 7 ))y=68(s—s")S8(r— 7). (13
whose values depend on the lattice. The associated first order .
equations of motion read Here and in the following the line overis omitted.
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The caseD;=0 reduces Eq(1l) to the KdV-Burgers
equation. The associated KdV equation is
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are also orthogonal, so the inner prodiidse; (s, 7)h(s,7)
projects a functiorn onto the functiong ¢;};—;,. Then, by

projecting Eq.(18) we get

9, u+6Udu+dsu=0 (14) _ _ _ .
AS(7)+Byp(7)=f;+ flamPing flloise =12,
whose one-soliton solution reads (21
U(s,7) =275 sech no(s—4n57—s0)]. (15  where
Jdu
Here A= | asiga, (22
1
ﬂo=5v36(v —C) (16) au
Bi:f dS% bi, (23
is the inverse soliton width ang}, is the initial soliton posi-
tion. The sound velocitg and the constant are defined in
Eq. (B5), fi=f ds(6udgu+ diu) ¢, (24)
Ill. COLLECTIVE COORDINATE APPROACH fidamping: V1f dsdeich; (25)
To analyze our problem we assume that the soliton profile
uo(s,7) is not disturbed by the noise and damping terms and Noi
that only the width and amplitude are modified. This assump- fiore=— \/D_lf dsdgé(s,7) ¢ . (26)

tion is well satisfied for low-energy solitons, whose velocity
is close to the sound velocity, because tails induced by thafter some calculations Eq21) takes the form
perturbations are small in this velocity regifi9,28. So we

introduce a generalized traveling wave ansatz of the form dS(7) 15\/D_1
"D —anr) s ot [ dstosgots ), @)
u(s,7)=ug[s—S(7),n(7)] 647°(7)
=27%(r) sech{n(7)[s—S(7)1}, (17) dz(7) 300, o
— (7
where the collective variable&(7) and 7(7) are the soliton dr 30+ 7?
position and the inverse soliton width, respectively. Here and 45 \/D_
1

in the following the index of the one-soliton solutiarp is
omitted.

To obtain the equations for our collective coordinates we
follow [30,31). First, by substituting Eq(17) into Eqg.(11)  To achieve the calculations we have assumed that the soliton
we get profile remains mostly unaffected and only its width and am-
plitude change due to the stochastic perturbations. Then, at
least for small noise, we can perform the calculations by
taking the soliton field out of the averages. Moreover, we
have interpreted Eq$27) and(28) in the Stratonovich sense,
because it assumeégs, 7) is a real noise with finite correla-
tion time, which is then allowed to become infinitesimally
small after calculating measurable quantitigs]. Notice
that white noise means taking the limit of zero correlation
time.

Equations(27) and(28) can take the form

+mf ds(dsp,) (s, 7). (28

1S(7)+ (1) =119 u—\D1dsf(s,7), (189

where

au

aS (19

$a(s,7)=

and

(20 dY(r)

_ Ju
¢2(S,T)— %
dr

:AStf[Y(T)]Jrf dsBSU[s,Y(7)]&(s,7), (29

Notice that the functiong¢;};-;, coincide with the adia-
batic approximationfomitting secular terms in timeof the

discrete solutions of the linearized KdV equation around the Y1 Y2} :St{rs’ g% are the elements Ofsfrhe vectyr, the ele-
one-soliton solutior(15) [32]. We remark here that our col- MeNts{A7",A; '} of the drift vectorA>" are the drift terms
lective coordinate theory does not take into account the corin Egs.(27) and(28), respectively. The diffusion matrig>""

tribution of the phonon modegcontinuous basis function is diagonal, wher@?}" andB3," are the coefficients in front
solution of the linearized KdY We discuss the effect of of the noise in Eqs(27) and (28), respectively. In order to

noise-induced phonons in Sec. IV B. The functi¢as};_,,  facilitate the calculations we write E9) in the Ito form,

where the elements of the noise vecgsatisfy Eq.(13).
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dY(T)ZAltO[Y(T)]dT‘l'J dsB"°[s,Y(7)]dW(s, 1),
(30

where thedW(s, )= &(s,7)dr is a Wiener process. Via a

Fokker-Planck equation, one can show that the elements of

the drift vectorA'® read[33]

“: O[Y(‘)] AIS [Y(])
2- k1

ij.k=1.2, (3D
while
B'°[s,Y(7)]=BS's,Y(7)]. (32

Notice thatA'® andB'® are nonanticipating functions. So,
from Eq. (30) it is easy to show the following averages:

<S(T)>=<f07d7-’4772(7-r)>’

(m(1)= —< fonT,30+ — 713(7’)>

fT 225231+ 87%)D,
+ | d7’
0 11230+ 72)?

fT 75D1
dr ————),
o 1125%(7)

frd 122521+ 7%) Dyp(7')
o 2830+m2)2 |’

Vaf[S(T)]=<

Val[ﬂ(T)]=<

Corr[S(r)n(7)]=0. (33

PHYSICAL REVIEW E 67, 016610 (2003

In order to determine the values af andb;; we have de-

manded that Eq$35) satisfy the relation$33). It is straight-
forward to see that Eq$35) take the form

53 | D;

dS(r)=47%%(7)d W, (7), 3
S(m)=4n(7) T+4ﬁ T (1), (37
30v, 225231+87%)D;
d —_| —_ 3
() ( 30r 27 7 T a30e w22
1521+ 72
T Dyn(NdWy(7). (39)

* 27(30+ 72)

Equations(37) and (38) are statistically equivalent to Eqgs.
(27) and (28) because they share the same Fokker-Planck
equation. Since the derivation of Eq87) and(38) involved
approximations, we have not solved them exactly. Instead of
that, we have used perturbation analy{84], which is de-
veloped in detail in Appendix C. In order to do so, we have
considered the thermal terms as perturbations, so Bd5.
and (38) take the form

dS(r)=47%(1)d7+ 5\3 &dW( ), (39
7'—777'1':54\/7 773(7_) (1),
_ 30w 225231+ 87%)D,
dnlm)= 30+w277(7)d7+6( 11230+ 72)2
1521+ 72
+m\/Dlr](T)dW2(T) . (40)

Now, we seek an asymptotic solution in the form of a small-

Here(- - -) means average over an ensemble of realization§©!S€ €xpansion

Corr(PQ)=(PQ)—(P){(Q) and vatP)=Corr(PP).

(34)
Now we define a new set of Langevin equations
in(T):aidT+ E b”dVVJ(T)
i
with i,j=1,2 and{Y,Y,}={S, 5}, (35

which we have interpreted in the Ito sensdW;(7)

S(7)=so(7)+esy(T)+- -+,

n(7)=no(7T)+en(7)+---. (41)

Here, e is a factor introduced for convenience in the analyti-
cal calculations. Notice that the case 0 reduces Eq439)
and (40) to the deterministic case. In order to interpret our
perturbation theory we must set=1 and assume that the

= &;(7)d T are Wiener processes where we have let the noiseierms on the right-hand side of Eq89) and(40) are suffi-

to be uncorrelated, namely,

<§j(7')§j’(7,)>:5(7_7,)5]']’- (36)

ciently small. So we must restrict ourselves to a regime of
low temperatures of the thermal batB { smal). From the
perturbation analysis we obtain that
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(S(7))=(so(7))+(s1(7))

75(0)

PHYSICAL REVIEW &7, 016610 (2003

15D ,(231+ 872) 75(0) (2(1+ A 7)%?—5N7—2)

=4—— In(1+\7)+

(472(1))y=(4n5(7)+870(7) 1(7))

_47B(0) 48D (231+87) no(0)((L+A )92 1)

7(30+ 72)2\2(1+\7)

14T

7(30+ 722N (1+ N 17)?

(42

—15 48021+ 72) 73(0)[8+ 7AT(5N7+4)]

var(S(7))=D;,

[2048 21+ %) 75(0) + 7(30+ ) 2NX(1+ A7) ] |,

5673(0)\ 4930+ 7)2N3(1+ N 1)2
15(1+7\)%2
39230+ 72)2 3(0)\ 3
720 1(21+ 72) 3(0 1 1
var(d n?(1))= 1( ) 70(0) _
49\ (30+ 72)2 VI+A7  (1+A1)*

The expressions fdD, and\ are given by Eqs(B13) and
(C10), respectively.

IV. SIMULATIONS
Substituting Egs(6) and (7) into Eqg. (3) we get the full

A suitable method to detect the position of a pulse lattice
solitonV,,(t) is to search for its maximurf28]. However, in
the presence of stochastic perturbations this method is not
useful since the pulse shape is strongly masked by the noise,
an example of this situation is shown in Appendix E. So
from the data of our simulations we have taken snapshots of

set of discrete equations of motion written in absolute disthe system at different times, and from them we have gener-

placements. However, for our simulations relative displaceateq the kink-shap¥,(t) of the lattice soliton by using the
ments are more convenient, because the lattice solitons igygorithm

this representation are pulse solitons whose amplitude van-
ishes at infinity. This characteristic allows us to use periodic n-1

boundary conditions which are necessary for long simulation Y, (1))=Y (t)+ 2 Vi(t), n=23,...N.
times, because we want to avoid reflections at the bound- =1

aries. So the discrete equations of motion in relative dis- . _ . .
placements read The kink shape is less distorted by the noise than the pulse

shapeV;(t). In Eq. (45 Y,(t) is a boundary condition that
we have demanded to be

(45)

d2v,
dt?

M =G(Vh+1—2Vpt+Vyoy)

N—-1

1
Yi==3 2 Vi(),

(46)
+GA(Vh, —2Va+ Vi)

M dVnei | dVp N dVy-1 so att=0 the amplitude of the center of the kink shape is
4 dt dt zero, as it should be from the thed®]. Notice that
+\D[€naa(D=26n(D + & 1(D], (43 pa
_ V(D)= Yi(t)= 2 Vi(t) (47
whereV,(t) =Y,+1(t) = Y,(t) and D=2MvkgT. The peri- i=1
odic boundary conditions read . o .
is a conserved quantity in our system, i.e.,
dVe d'vy.; dvy d'vy o1 N1
dt dtt ' dtt  dt’ o Ya(H) =Y ()= >, Vi(t)=0. (48)
=1

Eo()=E&n—1(D),  En(t)=E&41(D), (44)

whereN is the number of particles of our chain aNd-1 is
the number of bonds.

We have checked E@48) with a precision higher than 164
over the whole time range of our Langevin dynamics simu-
lations.
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In order to determine every time the parameters of theand velocity, respectively. However, we have taken only the
soliton, namely, soliton velocity and positionx, we have parametew as an estimate of the soliton velocity and with
proceeded as follows. We have searched for the values of thhis value we have used a different method to determine the
parameterx andv where the relation soliton position. In fact, in order to be in agreement with our

collective coordinate approach, where we have projected the

ngnl _ equations of motion onto the Goldstone maglg[Eq. (19)],
e, [Yn=Yo(na=xv)]=0 (49 \we have projected the noisy kink-shapg(t) onto the puise
solution u, defined in Eqg.(15). Notice that in the absolute
is fulfilled. Here displacement representation the functignis the Goldstone
mode. So this projection reads
_6\/2hc(v—c)t na—x 50
Yo(Na—x,v)= o an L(o) (50 .
P(x)= Yi(t ia—x,v), 54
with ()= 2 Yihus(ia=xv) (54)
L(v)= t)] =2 h 51 h
(v)=[ant)] "= VZC(U—C)' (51  where
Here the functiony is defined in Eq(16) and the constants 6c(v—c) ia—x
h, p, ¢, anda are defined in Eq$B5) and(B9). the function Uo(ia—x,v)=———sech L) (55
(50) is the absolute displacement representation of the one- P
soliton solution(15) in a frame moving with the soliton ve-
locity. In Eq. (49) andx=na. The value ofn, in Eq. (54) is much larger than
the soliton width, so the boundary effects are negligible. The
ne=int(x) and n,=int §L[v(0)]) (52) function ug(i a—x,v) is the one-soliton solutioril5) in a
0 ! 2 ’ frame moving with the soliton velocity. Afterwards we have

searched, by linear interpolation, the valgewhere P(x)
where int(-) denotes the integer part of a number a{®)  vanishes and we have defined it as the position of the soliton
is the initial soliton velocity. The value af; has been cho- center of mass. At this point we remark that the values of
sen to take into account only the core of the lattice kinkfollowing from this latter method are not significantly differ-
shape and it is constant during our simulations. In order t@nt from the values ok following from the former method
determine bothx andv we consider different values ofin  [Eqgs.(49) and(53)]. However, we consider the latter method
Eq. (49) within a range of velocities around the initial soliton to be more appropriate than the former one in the sense that
velocity, namely,v —ce{0.v(0)—c],Zv(0)—c]}. For  we proceed in our code in a similar way as in our analytical
every value ofv we search the value that fulfills Eq. (49), calculations.

so we get a set of pairs of valugsaandv. Finally, from this Our Langevin dynamics simulations were performed for a
set of pairs of values we search, by using linear interpolationghain with 1500 lattice points. The time integration was car-
the values ok andv which fulfill the relation ried out by using the Heun meth¢@4,35, which has been
successfully used in the numerical solution of partial differ-
ng+ng . . . . . .
E Yyo(na—x.0) ential equations and _@fference-dlffer_entl_al equations,
n=hcn, n¥o ' coupled to either an additive or a multiplicative noise term
RoThy =1. (53)  [21-23,38. Here, we have used the conserved quamt}ﬂQ
E [yo(Na—x,v)]2 to check the accuracy of our cofi28]. For the longest simu-
n=ho-n, ' lation time the variation of this conserved quantity has been

lower than 10°%. In order to start the simulations & 0

Notice that in Eqs(49) and (53) we have assumed that the we have used the one-soliton solutidd) of the KdV equa-
lattice kink-shapeY, is closely related with the functioypy, tion in the laboratory frame. The average values have been
however, as was mentioned in REZ8], a pulse lattice soli- calculated over 200 realizations up to a final time 5000. All
ton in the presence of damping develops a tail. The amplivalues of the constants of the E¢3) are set at unity except
tude of this trailing tail depends on both soliton the velocitythe damping constant which is set @t 0.003. Notice that
and the damping, so it is bigger when the damping and/or théor lower values of damping the relaxation of the system
soliton velocity is higher. Thus, we restrict ourselves to ve-energy would take more time in our simulations to reach a
locities very close to the sound velocity where the effect ofregime close to its stationary value. On the other hand,
this trailing tail is negligible. higher values of damping can strongly distort the soliton

Up to now we have determined the parameteenduv, shape, namely, the tail induced by the damping cannot be
which fit the functiony, to the lattice kink-shap¥,, so we  neglected when the value of the damping is high. In Appen-
have not measured directly eitheor v. Since the function dix D we show the thermalization process in our system. In
Yo is closely related to the lattice kink-shayg, one could our simulations the values of temperatdrend initial soli-
assume bothkx andv as an estimate of the soliton position ton velocityv(0) are parameter&ee figure captions
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30 0.007 FIG. 1. Averaged soliton posi-
tion (a) and velocity(b) vs time in
25 0.006 X
0 005 the sound_ velocity framea=x—t
- 20 " oon = (c=1), with »=0.003 andT=5
<15 T = x10°. Dotted lines, simulation,
" »0.003 E solid lines, theonfEgs. (42)]. A,
0.002 B, C, D, and E correspond to dif-
5 " 0.001 2 ferent initial velocities, namely,
; : o 4 0 v(0)=1.001, 1.003, 1.005, and
1000 zooot3ooo 4000 5000 0 1000 2000t3000 4000 5000 1.007, respectively.
A. Soliton propagation We observe that the behavior of the variances depends

In Figs. 1a) and 1b) we show several examples of both strongly on the in!ti_al soliton velocity. For Iow-energy soli-
the averaged soliton positigm(t)) and the averaged soliton (OnS: whose velocities are close to the sound velgéitys. 2

velocity (v (t)) as functions of time from both the simulation and 3, case$a). and.(b)], t.he.soliton diffusion tends to pe
and the theorysee Eqs(42)]. Notice that nearly normal, i.e., linear in time. In fact, our theory predicts
a normal diffusion for times

1
(x(1)=—(S(BD) +ct (56)
t<t*=

3o+7r2)( c )
495 |\ v(v(0)—c)/ (58)

This estimate was obtained by comparing the first with sec-
p? ond terms of the Taylor expansion in powers ofof the
(v(t)—c)= (E) (47%(BY)). (57)  variance of the velocitysee Eq(C16)]. For low-energy soli-
tons[v(0)=c] t* is much larger than our simulation time
Figs. 2a) and 3a)]. This means that the superdiffusivity is
ot very dominant. However, for higher-energy solitons the

and

For all cases the soliton position from the simulation agree

well with the position given by the analytical theory. In the anomalous behavior turns out to be important after some
case of the soliton velocity, the agreement is better for initialtime_ In those caset is comparable with our simulation
velocities close to the sound velocity than for higher veloci-,[ime [Figs. 2e) and 3e)].

ties. In fact, the time evolution of the velocity given by the

imulation is al hiaher th he th ical dicti In the case of solitons with very low energy the variance
simulation Is always higher than the theoretical prediction. ¢ w0 ssition[Figs. 2a) and 3a)] does not agree well with
This systematic difference may be due to the small tail that i

d by the latti i : g loai he theoretical prediction. In fact, we observe a transient be-
gelr\teratgs ét.te attlceﬁsotlton since It |s|a n?hntgpfo oglca avior for timest=<3/v=1000, where the system energy
SOl c.)n'[ |. So i may alfect our numerical method for dé- g4,y 5 fast relaxation processee Appendix [ Those
termining the soliton position. We point out that the ampli-

o . ) discrepancies between theory and simulations may be due to
tude of this tail depends on both the soliton velocity and thqhe combination of two effects. First, the profile of low-

§nergy solitons is strongly masked by the noise, so the nu-

close to the sou_nd_ velocity anq small values of the dam.p'ngnerical detection of the position can be distorted. Second,
constan{28]. This is the most important reason for restrict- not only the noise but also the noise-induced phonons can

ing our study to low-energy solitons whose velocities Cmake a significant contribution to the variance of the posi-

close to the sound velocity. Since this difference is system-, . he reduced Te kaT/H(0
atic it does not play any role in the numerical calculation oftion: Since the reduced temperatdre-kgT/H(0) [tempera-
ture in units of the initial soliton energhi(0)], of thether-

the variances which is our more important goal in this amde'mal bath is higher here than in the other ca@e® captions
Figs. 2 and R In this respect we estimate the phonon effect
B. Soliton diffusion on the diffusion of low-energy solitons in the following sec-
In Figs. 2 and 3 we show the variances of the solitontion (see also Fig. #
position and velocity vs time for different initial velocities. ~ Notice that the variance of the soliton position is larger
The temperature of the thermal bath in Fig. 3 is 10 timegor low-energy solitongFigs. 2a) and 3a)] than for higher-
higher than that in Fig. 2. The results scale very well by aenergy solitongfor instance Figs. @) and 3e)]. This is due
factor of 10; i.e., the variances are proportional to the tem10 the fact that the higher-energy solitons are more robust
perature, as expected from Ed2). against thermal fluctuations than thE lower-energy ones. Or,
Notice that our theory(solid line9 has no adjustable equivalently, the reduced temperatdreof the thermal bath
parameters. Taking into account that the theory consists aé higher for slow solitons than for the fast oriese captions
several step&discrete system- Bq equation— KdV equa-  of Figs. 2 and 3

tion — collective coordinate theory perturbation analysjs On the other hand, the superdiffusive behavior is more
it is already a significant success to obtain the observed rggronounced for higher-energy solitons. This is because the
sults, as seen in Figs. 2 and 3. soliton velocity turns out to be more sensitive to the thermal
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fluctuations in this case than in the case of broader solitonsnduced superdiffusive behavior, it does not have the same
Notice that the soliton velocity and soliton width are related.dependence with respect to the soliton width as our results
Also, since the higher-energy solitons encompass few latticé42), which agree well with our simulations.
sites, the soliton-width perturbations are larger with respect
to the averaged soliton width in this case than in the case of
broader solitonglow-energy solitons In fact, the variance
of the soliton velocity shows this effect, namely, that for In order to estimate this contribution we have performed
broader soliton$Figs. 2b) and 3b)] this variance is smaller the following numerical test. We have simulated the propa-
than for narrower solitonffor instance Figs. @) and 3f)]. gation of low-energy solitons under thermal fluctuations up
The discrepancy between our theory and the numerical simue a time(e.g., 2500 when the system energy is close to its
lations for higher-energy solitorifigs. 2—3, case®)—(f)]is  stationary valugsee Appendix D Notice that the diffusion
mainly due to the fact that our theory is valid only for soliton of low-energy solitons is mostly normésee Figs. &) and
velocities close to the sound velocity. 3(a)]. Afterwards, we have isolated the system from the ther-
With respect to the variance of the soliton velodiBigs.  mal bath by switching off noise and damping, so that solitons
2 and 3, panelgb), (d), and(e)] we observe that it is mostly propagate only in the noise-induced phonon bath. The diffu-
anomalous and its behavior is nearly quantitatively predictedion is mostly normal before and after the system is isolated,
by our theory for 8<t=<2000 in all the cases. For larger i.e., the variance of the position is linear in time. We have
times, 20068<t<5000, there is a discrepancy that becomesompared the slope of the variance of the isolated system
larger with increasing initial velocities. (t>2500) with the slope of the variance in the case when the
We remark that the numerical results shown in Figs. 2 angystem is in contact with the thermal bath the whole time. An
3 do not change for systems with the double number of sitesgxample of this test is shown in Fig. 4. We observe that both
namely, 3000. slopes, after switching off noise and damping, are different.
We comment that there was a previous attempt by Scalin a normal diffusion process the slope of the variance of the
erandiet al. [19] to calculate theoretically the mean squaresoliton position is the diffusion constant. We call tiis,,,,
displacement of a KdV soliton subject to stochastic fluctuawhen the system is in contact with the thermal bath since
tions. They considered the case of small Stokes damping arttiere is a contribution of both the thermal fluctuations and
a simple white noisé& correlated in time and space. Though the phonons. The diffusion constant due to the noise-induced
their theoretical result shows the appearance of a noisgshonon bathisolated systepis termedD . On the other

C. Estimate of the phonon contribution
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THERMAL DIFFUSION OF SUPERSONIC SOLITONS IN . .. PHYSICAL REVIEW &7, 016610 (2003

a b
10
’ B
X 6 4
@
;r; -
o 4 ®
—
2
1000 2000 3000 4000 5000 ) )
t FIG. 3. Variances of the soli-
. ton position[panels(a), (c), and
5 T (e)] and velocity[panels(b), (d),
X and (f)] of the soliton vs time,
4 B with »=0.003 andT=5x10""°.
E 3 o Dotted lines, simulation; solid
u  § o lines, theony{Egs.(42)]. The pan-
g2 . i 2 © els correspond to different initial
s S velocities, namely,v(0)=1.003
' ,..w,er'a""’”“"' [(@ and (b)], 1.005[(c) and (d)]
: and 1.007[(e) and (f)]. The re-
1000 zooot 3000 2000 5000 duced temperatures areT
=0.061419, 0.0283324, and
5 b £ : 0.016 976 5, respectively.
4
X3
:;
S 2
1
0
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
t t

hand, our theoretical diffusion constadyf, is defined as the dynamics of the soliton position. This is because the diffu-
linear coefficient of the Taylor expansion ofir(x(t)) [see sive dynamics is relatively small with respect to the soliton
Egs.(C13 and (C14)]. Since our theory does not take into width. In this respect we note that higher-energy solitons
account the contribution of phonon modes, we expect thapresent a well defined shape, i.e., the thermal fluctuations are
the valueD ,4ise= Diotai— Dpn may be of the same order of
magnitude ofDy,. We observe in Fig. 5 that the relative
deviation of Dy, from Dpgiser [(Dnoise= Dth)/Dnoisel, has

the same order of magnitude Bf;, which is not surprising
since the soliton shape is strongly masked and distorted by
the noise(see Appendix E In this respect we remark that
from our results in Figs. 2 and 3 we observe that

War(x(1))<L(v (1)), (59

1000 2000 3000 4000 5000

where the soliton width. (v (t)) is defined in Eq(51). The t

relation(59) means that the stochastic deviations of the soli- £ 4. An example of a test to determine the phonon contribu-
ton center from its mean value are relatively small comparegon to the diffusion constant. Comparison of the behavior ofxjar(
with the soliton width. So the diffusive dynamiCS of the soli- from Simu|ations(d0t’[ed |ine$ when the System is in ContacA)
ton position evolves inside the soliton core. Thus, this dy-and isolated B, noise and damping are switched off for 2500)
namics is very sensitive to the fluctuations of the solitonfrom the thermal bath. The slope of the straight ligsslid lineg
shape. Notice that our method of determining the solitorfitted to the simulation datédotted in both cases give the observ-
position depends implicitly on the soliton shape. So in theable values of the diffusion constant, namely,, (A) and Dy,
case of low-energy solitons, where the shape is stronglyB). The difference can be compared with the sldpg of the
masked by the noise, the uncertainties of the method of soldashed lindlinear part of the theory, EqC13)]. v(0)=1.003, T

ton detection are relatively large compared with the diffusive=5x10"%, T=0.006 141 9.
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L 0-65 argon[38]. So, for example, in the cases ofc=1.003 or
S 0.6 1.03 we get

4

W Q.55

% o s a-helix argon

A R Y SO SR ¢ vlc H(0)/kg [K] H(0)/kg [K]
v 0.45

" 0.4 1.003 1.4 0.06
=0.35 1.03 45.7 2.15

24

0.3 0.01 0.02 0.03 0.04 0.05 0.06

kg T/H(0) Here kg is the Boltzmann constant. Then, the value of the
temperature of the thermal bath can be obtained by multiply-
FIG. 5. Relative deviatiorf(D ,oise— Din)/Dnoise) Of the diffu-  ing the values oH(0)/kg by the reduced temperature. For

sion coefficient vkgT/H(0)=T with v(0)=1.003. instance, in thea-helix case the reduced temperatufe
=0.061 419(see caption Fig.)3corresponds to 0.1 K of the

small respect to the soliton amplitude, so the variance of théhermal bath ifv (0)=1.003 or 3.8 K ifv(0)=1.03.

soliton position, given by our detection method, indeed

agrees better with our theofysee Zc) and 3c)]. Finally, we

stress that in our tests the phonon contribution to the soliton

diffusion could be clearly observed only for very low-energy  We have studied the nonequilibrium diffusion dynamics
solitons[Figs. 2 and 3, caseg) and(e)], for higher-energy  of lattice solitons on a classical chain of atoms under thermal
solitons the effect is negligible, nameD,,,~0. fluctuations, namely, soliton dynamics when the system en-
ergy is close to its stationary value. The interaction potential
D. Estimate of the bath temperature in real physical systems ~ P&tween the atoms is harmonic plus a cubic anharmonicity.

) ) ) ) The chain is coupled to a thermal bath at a given tempera-
To clarify the physical meaning of the obtained results Wey,re For that reason we have included dissipation and noise

have estimated the soliton energy and characteristic_temperﬁf the discrete equations of motion of the chain. Here, it is
ture of the thermal bath for two systems where solitons arggsmed that the energy dissipation is provided by the irre-
believed to play an essential role:helical proteing9] and  \ersiple processes arising from the finite velocity of the rela-
crystal inertial gasef37]. In both cases the Lennard-Jonesijye displacements between particles in the chain. Thus the
(LJ) interaction potential dissipative term takes the form of a hydrodynamical damp-
ing which is extensively used in elasticity theory. The noise
a\t? term which fulfills the fluctuation-dissipation theorem then
¢LJ:4E0[(F> - (60 pecomes a discrete gradient of white no&eorrelated in
space and time. In the continuum approach our original dis-
crete set of equations leads to a form of noisy KdV-Burgers
is used. One can estimate the potential param@ensdA of ~ equation. At this point we have used a collective coordinate
the Hamiltonian(1) by using Taylor expansion of Eq60) approach to study the diffusion dynamics of both position
around the minimunm = (1—2Y%)a. So, taking into account and velocity of the soliton. The soliton position and the in-
only the coefficients of the harmonic and cubic terms of thisverse soliton width have been found to be good collective
expansion, one can determine the potential parameterspordinates to describe the soliton diffusion. We have de-
namely, rived two stochastic ordinary differential equations with mul-
tiplicative noise which have been solved analytically using
stochastic perturbation analysis.

For low-energy solitons, whose velocities are close to the
sound velocity, our molecular dynamics simulation has con-
firmed our analytical predictions. Namely, normal diffusion
of lattice solitons governs short times, while superdiffusive
By using the one-soliton solution of the Bq E&1) [4] and  behavior is present for long times. The time range of the
performing an integration instead of a summation in €, normal diffusion depends on the initial velocity of the soli-
the initial soliton energyH(0) reads ton: it is large for velocities close to the sound velocity and

short for high velocities. The collective coordinate approach
does not take into account the noise-induced phonon bath,
6\/§ ) s 5 however, we have shown that this does not play an important
((v/e)*=1)"(1+9(v/c))Eo. (62 role except when the reduced temperatitemmperature in
units of the initial soliton energid(0)] of the thermal bath
is high. In that regime the soliton diffusion is normal. In this
Herev andc are the soliton and sound velocities, respec-case, for a given temperature, we have estimated in our simu-
tively. E,=0.22V for a-helix [9] or E,=1.0x 10 2 eV for lations the value of the diffusion constant due to the noise-

V. SUMMARY AND CONCLUSIONS

a6

r

21 3622°E,
A=— and G=———.

27/6a a

(61)

1
HO)=225

016610-10



THERMAL DIFFUSION OF SUPERSONIC SOLITONS IN . .. PHYSICAL REVIEW &7, 016610 (2003

induced phonon bath when the system energy is close to its ﬁ
stationary value. We have subtracted this value from the full K= ; M U= ; VY1 Y] (A5)

value of the diffusion constant, which is not only due to the
induced phonons but also due to the noise. The order of

magnitude of the resultant value of this subtraction is pre-andv is an arbitrary potential which depends on the relative

dicted by the collective coordinate approach. displacement¥ ., ;—Y, . The discrete Fourier transform of

Since we do not observe in our numerical results anyFds- (A1) and(A2) read
dependence on the size of the system, we may expect similar ~

results for very large systems, i.e., fide>1500. &_ﬁ- — V7P, + ENoisg 1)
We provided an example by using an approximation of TRAREAL R ’

the Lennard-Jones potential to determine the temperature of

the thermal bath in the cases®fhelical proteins and crystal d¥,

inertial gases. —=
Finally, our results above point out the robustness of lat-

tice solitons. In fact, they can exist even for higher values of

temperature and damping constant than those explicitly con¥€re

sidered in the present article. On the other hand, for lower ~

values of the temperature the variances of the soliton posi- y=2[1—cogk)]. (A7)

tion and velocity turn out to be very small because they scale .

with the temperature. So it is very difficult to observe them. We define
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: (AB)

(EDE(t))y=D(K) S(t—t") & s, (A9)

andD (k) is unknown.

The associated Fokker-Planck equation of E¢) in

The goal of this appendix is to find the form of the noise
force that would satisfy the fluctuation-dissipation theorem.
The associated set of Langevin equations of the classical hp :Ek
chain of atoms under thermal fluctuations are

Py
— 95, (Tkpi) = 7 9% _ Pk

~ - D(k)
dP, : ) + 5 | Pyot+ —=9p , Al10
dtn:Tn_f_mese_i_FEampmg, (A1) YYk Pk( kPk 207 Pkpk) ( )
where
dy, _ E (A2)
dt M’ L L
p:<H 6[Pk—Pk(t>]a[Yk—Yk<t>]>. (A12)
where K
oH ou In order to determin® (k) we have demanded the stationary
Th=— N gy solution of Eg.(A10) to be the Boltzmann distribution,
n n
namely,

Q¥oiz 0¥y dYos

Damping_ +
Fn My —4¢ dt = dt

H
(A3) p=Nexp( = kB—T) , (A12)

and FNOsqt), which satisfies the fluctuation-dissipation
theorem, is to be determine®,, is the momentumy, de-
notes longitudinal displacement from its equilibrium posi-
tion, of nth particle with mas# and velocitydY,, /dt. H is
the Hamiltonian

whereH is defined in Eq(A4) and AV is the normalization
constant. Substituting EgA12) into Eq.(A10), it is straight-
forward to see that

D(k)=2vyMKgT. (A13)
H=K+U, (A4)
Therefore, from Eq(A8) together with(A13), it is easy to
where show that in position space
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<FNoise(t)FNoise(t,)> 2. Noisy and damped KdV equation
n n’
_ , We write Eq.(B1) in the sound velocity frame and make
=~ 2vMkgTo(t=t")(On+10' =280 0+ On-107)- a further approximation concerning variations in time. In this
(A14) case we may use the reductive perturbation technjgag
Therefore, we rewrite EqB1) in the perturbation form
Finally, the relation(A14) can be satisfied by the definition 5 5 ) .
Iy — 2y — paxyay —hdyy
Nois — —
I:n e(t) ZVMkBT[gr‘H—l(t) gn(t)]! (A]-S) =K[va2¢9§¢9ty+a\/5(9x§(x,t)], (BG)
where )
where we have introduced a small parametefor conve-
(D En(1))y=8(t—t")8np (A16) nience. Afterwards, we perform the following change of vari-
' ables

APPENDIX B: CONTINUUM LIMIT s=ka(x—ct), 7= K3,8'[, U= ydy, (B7)

In order to reduce Eq23) to a form of noisy and damped
KdV equation we have performed two steps. First, we haveo that
employed the continuum approaeh20] in order to obtain a
form of noisy and damped Bq equation, and then we have o =rads and 8,=x3B.— kacd,, (B8)
used the reductive perturbation technid@6,39 in order to

obtain the noisy and damped KdV equation. where

1. Noisy and damped Bq equation o p3 1
Here we have used the procedure of Pnevmat a= . B= , oY== (B9)
p fds \/ﬁ B 120@ Y

who expandedY,-4(t) and Y,.,(t) in a Taylor series 6h
aroundy(x,t), with x=na, where the equilibrium atomic

spacinga is regarded as an expansion parameter. Then, colVe have also expressedand ¢ in a perturbation series
lecting powers of, Eq. (3) together with Eqs(6) and(7) at

0O(a% takes the form U=kU;+ Kk2Uy+ - - -, (B10)
2, ~242 2 4 22
Y =CI Y+ Poxydyy+ haxy+ vasdydy + a\/Baxg(Xa(tB)i) E=ké+ K2§2+ R (B11)
where Here the parametet indicates the magnitude of the rate of
change, the coefficients and «* in Eq. (B7) are chosen in
Enir(D)— (1) order to balance the nonlinear term, and the dispersive term
— Iy E(X,1), (B2) and the time derivative are of the same ordekinrhe small

a®? noise expansiofiB1l) is defined such that the lowest order

) ) terms of noise and damping are of the same order. Substitut-
with properties ing Egs.(B8), (B10), and (B11) into (B6), and keeping the
lowest order terms, namel®(«°®), we find that
(dx€(x,1))=0,

<(9X§(X t)&xff(x, t,)>:&X/&X(S(X_X,)(S(t_t,). &TU+6U(95U+(9§U: VlélSSu_ \/D_lasg(s! T), (Blz)

(B3)
where we have seat=u; andé=¢;.
The diffusion constant takes the form
2vkgT Yora’c D,=Da B 2 (B13)
14 vV =—, =D« -
D= =" (B4) ovhp T p?
Other constants are APPENDIX C: PERTURBATION ANALYSIS
Ga 2a2AG In this appendix we develop a perturbation approach to
cz=7, p= P the equation$see Eqs(39) and (40)]
3 53 | D
a°G 2 1
h=—, =M/a. B5 dS(r)=47n°(r)d7+e——=\/ —=—dW,(7), (CD
120" P B9 T N 7¥(7)
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_ 30w 225231+ 87?)D,
dn(7)= 30+w277(7)d7+6( 11230+ 72)2 dr
1521+ 72
2[(30+ z)va(T dWy(7) |. (C2

We interpret Eqs(C1) and (C2) in the Ito sense where the
Wiener process dW(7)=¢(7)dr  with  (&(7)&(7"))
=o;;0(7—1'). We seek an asymptotic solution of the form

S(7)=So(7) +esy(7)+- -,

n(7)=no(7)+en(m)+- - (C3)
Inserting Egs.(C3) into Egs.(C1) and (C2) and collecting

powers ofe we gete®,

dso(7)=475(7)dr, (Ca
()= — —21_ sy (C5)
no(7)= 30+ 72 7007,
61,
\/—
dsi(7)=8n(7) ni(7)d7+ 4\/— 7 )dW1(T),
(Co)
01/1 2
dma(n)= = 2 (D m(ndr
1521+ 72
+ W\/ D17o(7)dWy(7). (C?
Solving Eqs.(C4) and(C5) we obtain
2
0
5= 47 114 a0, (c8)
70(0)
= , C9
770( 7) \/m_ ( )
with
60v; 75(0)
=—F. C10
30+ 72 (C10

Inserting Eq.(C9) in (C7) and solving, with the initial con-
dition 74(0)=0, we find

PHYSICAL REVIEW &7, 016610 (2003

45D ,(231+872) ((1+\7)%%—1)
56(30+ 72) 2\ (14 7)3?

1521+ 72
2( 7(30+ 7

71(7)

\/Dlno(o f (1+N7") AWy (7).
(C11)

Then inserting Eq9.C11) and(C9) in Eqg. (C6) and integrat-
ing once we get

15D 1(231+ 872) 575(0)
7(30+ w2)2\2(1+ N 1)
5y3D;
4\/7 3/2(0)

R 6021+ 72
J7(30+ 7?)

Si(7)= [2(1+N7)%?—BN7—2]

f (1+N7)3 Wy (')

————— D1 7340)

T 1 -
x | d —f 1+ N 7")dWo( 7).
Joor gy e o

(C12

To this order we have véS$(7))= e?var(s,(7)) and thus we
finally obtain

75D,

229D\
3 T+
1123(0)

44873(0)

o) |.
(C13

var(S(7))= 62(

The full expressions of vag) to this order of perturbation is
given by Eqs(42). Notice that the variance in the rest frame
reads

1
var(x(t))= gvar(S( BY)). (C19

Concerning soliton velocity, up to first order perturbation it
reads

(C19

Then, by substituting Eq$C9) and(C11) in Eq. (C15), itis
straightforward to see that

472 (1) =4n3()+8eno(7) 7 (7).

var(4 n%(7))=64eX no( 7)) >var(73( 7))

,( 360021+ 7%)D;

3
730tz 07

990Q 21+ 7?)D ;A
7(30+ 72)2

75(0) 7 +0(7%) |.

(C16)
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FIG. 6. vark) [Eg.(C14] and
var(v) [Eqg. (C17] vs time com-
pared with results from a numeri-
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The full expressions of var(#?) to this order of perturbation N
- ) : IH(t)
is given by Eqs(42). In the rest frame this variance reads (Heqe(t))= 2 Yn(t)m . (D3)
n=1 n
p2 2
var(v(t))=(§ var(42(Bt)). (c1p  For finite times(Heq(t)) possesses two contributions, one
o

due to the coupling to the thermal ba eqp(t)> and the

other one due to the solitonHS' (1)). So
In Fig. 6 we show some examples of var(and varg) (i eqp(V))-

compared with results from a numerical solution of EGS) (Hegqd£))=(HM (1)) +(H(1)), (D4)

and(38) for which we have used the Heun metH@%]. The ed eap eapl

variances have been obtained by averaging over 1000 reglotice that for a very large systerN%lSOO) the contribu-

izations. tion of the soliton energy,H qp(t)) can be neglected. How-

ever, in our system of 1500 sites this contribution is appre-

APPENDIX D: THERMALIZATION PROCESS ciable. In fact, the time evolution dfH.,(t)) for different

initial soliton energies presents different values due to the

soliton contribution. Here, we remark that in thermal equi-

librium, i.e., t—o, these differences vanish. In E{D4)

< N aH(t)> (Heqp t)) gives us information about the time evolution of

From the generalized equipartition theorf4@] we have
that

E _ the temperature of the system in terms of the temperature of

Yn(t) (D1) : L ol

n=1 Y n(t) the thermal bath. The soliton contributi¢hiZy(t)) can be
evaluated numerically using EqD3) when the soliton

when the system is in thermal equilibrium with an externalpropagates in the presence of the damping but without noise.

bath at temperatur€. The relation(D1) is strictly satisfied in  Then one can perform the numerical subtract{mqp(t))

the harmonic limit of the Hamiltoniaril), namely,A=0.  —(HS°(t)) to obtain(H qp(t)) which is shown in a nor-

< ) : eqnl
For finite values ofA the relation(D1) is a rather good ap- malized form in Fig. 7. We remark that we observe the same

proximation to evaluate the temperature of our system when
the relative displacements are sufficiently small, namely, 1

3 f 08— T

2l

Notice thatA=1 in our simulations. The conditiofD2) can e

be obtained by comparing the harmonic term with the cubic S0z

anharmonicity in Eq.1) and it is always satisfied in the ’ | | |

present work. 1000 2000 3000 4000 5000
So, in order to examine the thermalization process, one

can define the ensemble average FIG. 7. <Hg‘po}/NkBT vs t. »=0.003.
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0.075
0.05 FIG. 8. Lattice soliton profiles,
0.025 pulse shapega), kink shape(b).
G 0 Solid line, noisy shape, Dashed
-0.025 line, shape in the presence of
~0.05 damping only.T=5x10"%, v(0)
-0.075 =1.003, »=0.003, and =5000.
result here in systems with the double number of sites, APPENDIX E: PROFILES

namely 3000. The normalized thermalization process de-

pends only on the damping constant which has the same |n Fig. 8 we compare snapshots of the systemt at
value »=0.003 in all our simulations. Notice that for times =5000 with and without noise and in the presence
t=3/v=1000 there is a fast relaxation process, but for largebf damping. Figures @ and 8b) correspond to both the
times,t=3/v, the energy system approaches very slowly itskink shape (absolute displacementand the pulse shape
stationary value. The thermal equilibrium of the system with(relative displacemenisrespectively. Both shapes, with and
the external bath corresponds to the cz{tbﬁehqp(t»/kBT without noise, in Fig. &) were reconstructed from the
=1. shapes in Fig. @), respectively, by using the algorith(*5).
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